An Adaptive Multi-start Graph Partitioning Algorithm for Structuring Cellular Networks

M. Toril, V. Wille, I. Molina, C. Walshaw

Abstract:

In mobile network design, the problem of assigning network elements to controllers when defining network structure can be modeled as a graph partitioning problem. In this paper, a comprehensive analysis of a sophisticated graph partitioning algorithm for grouping base stations into packet control units in a mobile network is presented. The proposed algorithm combines multi-level and adaptive multi-start schemes to obtain high quality solutions efficiently. Performance assessment is carried out on a set of problem instances built from measurements in a live network. Overall results confirm that the proposed algorithm finds solutions better than those obtained by the classical multi-level approaches and much faster than classical multi-start approaches. The analysis of the optimization surface shows that the best local minima values follow a Gumbel distribution, which justifies the stagnation of naive multi-start approaches after a few attempts. Likewise, the analysis shows that the best local minima share strong similarities, which is the reason for the superiority of adaptive multi-start approaches. Finally, a sensitivity analysis shows the best internal parameter settings in the algorithm.

Key words. mobile network, optimization, graph partitioning, multi-level refinement, adaptive multi-start




Tue Dec 6 18:07:58 GMT 2011