
Dynamic Load Balancing of Distributed Memory Parallel

Computational Mechanics using Unstructured Meshes for

Multi-Physical Modelling

V.Aravinthan, S.P.Johnson, K.McManus, C.Walshaw, M.Cross

V.Aravinthan@gre.ac.uk

Parallel Processing Research Group

Centre for Numerical Modelling and Process Analysis

University of Greenwich, London, UK

Abstract

As the complexity of parallel applications in-

crease, the performance limitations resulting

from computational load imbalance become

dominant. Mapping the problem space to the

processors in a parallel machine in a manner

that balances the workload of each processors

will typically reduce the run-time. In many

cases the computation time required for a given

calculation cannot be pre-determined even at

run-time and so static partition of the prob-

lem returns poor performance. For problems

in which the computational load across the dis-

cretisation is dynamic and inhomogeneous, for

example multi-physics problems involving 
uid

and solid mechanics with phase changes, the

workload for a static subdomain will change

over the course of a computation and cannot

be estimated beforehand. For such applications

the mapping of loads to processors is required

to change dynamically, at run-time in order to

maintain reasonable e�ciency. The issues of dy-

namic load balancing are examined in the con-

text of PHYSICA, a three dimensional unstruc-

tured mesh multi-physics continuum mechanics

computational modelling code [2].

1 Introduction

Multi-Physics modelling on a continuum scale

brings together established techniques for struc-

tural mechanics and Computational Fluid Dy-

namics (CFD) to address problems which involve

many physical phenomena. The signi�cant non-

linearity of the di�erential equations involved

leads to a high computational demand from

moderate problem sizes. Parallel computation

is required to satisfy this demand. Single Pro-

gram Multi-Data (SPMD) overlapping Domain

Decomposition (DD) techniques established for

structured mesh CFD codes have been used by

the authors to successfully parallelise unstruc-

tured mesh muli-physics applications. As prac-

tical experience is accumulated the focus is di-

rected to the improvement of scalability and con-

sequently load balancing with a view to devel-

oping techniques that not only improve current

performance but provide a foundation for further

automation of parallelisation and implementa-

tion of Dynamic Load Balancing (DLB).

The cost of high performance parallel comput-

ers forces e�cient utilisation to justify their pur-

chase but the investment and expertise required

to fully convert a conventional sequential code

into SPMD DD parallel can be enormous. To re-

lieve this problem, tools are urgently required to

assist in the parallelisation process and dramati-

cally reduce the time required for parallelisation

but without sacri�cing the performance or qual-

ity of the resulting parallel software. The Com-

puter Aided Parallelisation Tools (CAPTools)

have been developed to handle complex appli-

cation codes (both new and dusty deck) in a

structured (regular) grid context using grid de-

composition parallelisation techniques [5, 3]. Ex-

ploitation of advanced interprocedural symbolic

dependence analysis[4] within a sophisticated en-

vironment allows a user to interact with the



tools, to direct and enhance the resulting par-

allel code. These techniques have demonstrated

transformation of serial source code into message

passing parallel source code that is not only ef-

�cient, scalable and portable but is also recog-

nizable and maintainable by the code origina-

tors. Extension of the CAPTools SPMD-DD-

MP paradigms in the manual parallelisation of

a number of unstructured mesh CFD and FEA

codes has culminated in parallel codes that ex-

hibit high e�ciency on a wide range of parallel

machines. Abstraction of the techniques into a

generic form has extended the scope of CAP-

Tools to automation of the parallelisation of un-

structured mesh based codes.

The performance of parallel software has, for

some time, been a focus of attention and so

the parameters that govern performance are now

well understood. Many components in a par-

allel application, the iterative solvers for exam-

ple, can now demonstrate excellent performance

on current generation hardware. This is not yet

the case for complete packages, especially those

that address complex applications such as multi-

physics modelling. Many factors impact on the

performance of such large scale applications, two

important issues for many unstructured mesh

multi-physics applications, are scalability and

load balancing. Load imbalance, appears in may

forms from small, often avoidable, static imbal-

ances to dynamic inhomogeneous load balanc-

ing problems. The focus of this paper is di-

rected towards the discussion of strategies that

address the important scalability and load bal-

ancing issues that arise in unstructured mesh ap-

plications and more speci�cally in unstructured

mesh multi-physics applications. Of particular

interest is to develop strategies that can assist

in the development of dynamic load balancing

in a generic automatable framework.

A static mesh partition is unlikely to provide

a good load balance when solving dynamic non-

linear problems in parallel using an unstructured

mesh. Prediction of the load associated with

each mesh entity (grid point, face, element, etc.)

is not simple. Even if the work-load is predicted

accurately, the computational work associated

with each portion of a problem's subdomain may

change over the course of solving the problem.

This can occur when the behaviour of the mod-

eled physical system changes with time. For ex-

ample, during the course of solving a problem,

more work may be required to resolve features

of the emerging solution. Load variations due to

di�erences, for example, in element shape or per-

haps grid point degree may be anticipated but

some e�ects such as changes in the discretisation

or the physics associated with each entity may

not be known until the code has run for some

time. Cache e�ects and inhomogeneous archi-

tectures further complicate prediction. Adaptive

meshing involving re�nement and de-re�nement

will inevitably su�er from signi�cant load im-

balance. Even with a �xed mesh, multi physi-

cal simulations such as the modelling of phase

changes such as melting or solidi�cation [2], can

lead to signi�cant imbalance. Here the appli-

cation of 
ow calculations are required only for

the liquid portion of the problem and similarly

the stress calculations are only required for the

solid portion. Such load imbalance may only be

determined at run time.

1.1 Load balance

Data distribution in an unstructured mesh DD

parallel application is ordinarily based on a de-

composition of the mesh into P subdomains cal-

culated to balance the computational load on

each processor. It is inevitable that the data

dependence in a DD parallel application will re-

quire punctuation by frequent synchronisation

points [6]. Any one processor allocated a greater

amount of work than it's peers will cause all

other processors to idle while it reaches each syn-

chronisation point.

For a complex application the prediction of

computational load is seldom accurate. It fol-

lows that a static mesh decomposition, and

hence a static load balance may, in practice, be

imbalanced. Load imbalance can arise from a

number of e�ects associated with data partition-

ing for inhomogeneous systems. Static inhomo-

geneity is evident in many forms:

� In the parallel hardware, di�erent proces-

sors may have di�ering calculation or com-

munication rates.

� In an unstructured mesh application code,

calculation may be based on loops over dif-

P2-H-2



fering entity types, such as mesh vertices,

elements, element faces, coe�cients in a ma-

trix system or others.

� In a multi-physics problem case, the calcu-

lation may be divided into a number of com-

putational domains, for example, 
ow in the


uid portion, stress-strain in the solid por-

tion and heat transfer over the entire prob-

lem.

To develop a system for improving a static load

balance under these conditions would require at

run-time; measuring the calculation and commu-

nication performance of each processor, measur-

ing the degree of connectivity of each mesh entity

and modi�cation of each entity weight in antici-

pation of which of the loops in the program will

include each entity. Such a calculation is fraught

with di�culties and presents a signi�cant over-

head in itself. The challenges for static load bal-

ancing in response to static inhomogeneity are

eclipsed by the di�culties presented by dynamic

inhomogeneity:

� In the parallel hardware, the processors

(and communication network) may be sub-

ject to workloads from other users.

� In an adaptive unstructured mesh applica-

tion code the mesh, and hence the partition

may change at each time step.

� In a multi-physics problem case, the compu-

tational domains may change at each time

step, e.g. solidi�cation, moving boundaries.

Dynamic Load Balancing (DLB) schemes for

moderately dynamic load changes have been ad-

dressed by many workers but DLB schemes for

large and rapid load swings remain a challenge.

Load balancing for multi-physics is still in it's

nascency. The development of strategies to im-

prove static load balancing is therefore consid-

ered with a view to providing a foundation for

the development of DLB for multi-physics.

2 Methodology

A practical solution of the dynamic load-

balancing problem involves [7]:

� Load Evaluation: An estimate of each pro-

cessor's load is required to determine the

extent of load imbalance.

� Pro�tability Determination: Does the cost

of load imbalance exceed the cost of load

migration.?

� Load Transfer Calculation: Based on the

measurements taken in the �rst phase, cal-

culate the work transfers necessary to bal-

ance the computation.

� Load Migration: The mesh is repartitioned

and the appropriate data transferred be-

tween processors.

By decomposing the dynamic load balancing

process into distinct phases, experiments can be

performed with di�erent strategies for each of

the above steps, allowing the impact of di�ering

techniques to be investigated.

2.1 Load Evaluation

Accurate load measurement is necessary both to

determine that a load imbalance exists and to

calculate how much work should be transferred

to relieve that imbalance. This requires accurate

measurement of processor execution time, idle

time and communication time. Many machines

provide clocks with nanosecond level accuracy

although standardisation of timer routines is

weak. A message-passing library can be instru-

mented to accumulate such timings into appro-

priate categories. Any time between communi-

cation operations would be labelled as execution

time (run time or CPU time), any time actu-

ally sending or receiving data would be tagged

as communication time and any time waiting to

receive a message would be accumulated as idle

time. However the accuracy of timing short op-

erations is a�ected by the overhead of calling the

timer in a manner analogous to the Heisenberg

uncertainty principle. For many communication

calls the overall performance of the code requires

that the communication start-up latency is ab-

solutely minimal. Adding a timer to such calls

adds to the latency and may cause performance

deterioration. As such the accuracy and impact

of idle timing is somewhat platform dependent.

P2-H-3



Converge?

Time Step

End

Time-Step

Loop

Start

Momentum

Pressure

Heat

Solidification

Converge?

Displacement

Stress

Mechanics
Loop
Fluid

Solid Mechanics
Loop

Level 3
(Solvers)

Level 2
(Inner loops:
Stress & Flow)

Level 1
(Outer loop)

Figure 1: Di�erent levels of loops that can be

found in a typical CFD code.

Most scienti�c codes have di�erent levels of

loops within the code, high level loops such as

the time step loop surround sweeps to converge

each time step and low level loops such as the

linear solver iterations. The appropriate part(s)

of the application code to time can vary widely

between di�erent codes. One code may necessi-

tate the timing of the top loop level, but another

code may require timing of a lower level loop.

Parallel application codes have inherent synchro-

nisation points within these loops. In particu-

lar, global norm calculations and other deter-

mination detection mechanisms typically involve

a global sum, checking of convergence or some

other reduction operation, the results of which

are checked by each processor involved. These

barrier operations provide an obvious point at

which to initiate load balancing.

2.2 Pro�tability Determination

Clearly the dynamic load balancing mechanism

must attempt to optimise the rate at which re-

balancing is carried out. The re-balancing pro-

cess is itself a parallel overhead. Re-balancing

too frequently will waste time in unpro�table

data migration. If re-balancing is left too long

then time is wasted as the load imbalance in-

creases. It is important to correctly deter-

mine the criteria that will be appropriate to re-

distribute the data. Three inter-linking factors

are involved:

� The level of imbalance in each section of the

code

� The run-time for each code section

� The time required for calculating and per-

forming a redistribution

These factors must be measured dynamically

from the code and used to predict if the re-

duction in imbalance (idle time) will compen-

sate for the cost of the dynamic load balancing

algorithm. Determination of when to load bal-

ance requires two phases: detecting that a load

imbalance exists and determining if the cost of

load balancing exceeds its possible bene�ts.

A re-balancing decision heuristic is proposed

which assumes that the rate of change of imbal-

ance between processors is always linear, that

the re-balancing time is constant, and that re-

balancing removes all imbalances. Response to

large changes in load has the potential to over

compensate and lead to instability in the algo-

rithm. Stability of the algorithm also becomes

an issue when the communication latency is high

compared to the speed of variation of the load;

unnecessary migrations should be avoided. It

is imperative to avoid oscillation or cycling of

the load across the processors and so a damp-

ing coe�cient is incorporated into the algorithm

to relax the movement of entities. The damping

coe�cient is calculated in response to the rate

of change of work and consequently limits the

speed of response to load changes.

The presented algorithm forms a cost func-

tion, t

cost

, that models the time for re-

distribution and the predicted application code

run-time in relation to the rate of increase of

imbalance (see equation 1) [1]. The model is

based on an instance in time and predicts what

would happen under the model assumptions. It

uses the number of iteration (n) between re-

distributions to predict run-time. t

cost

explic-

itly embodies two of the costs a re-mapping pol-

icy must manage: delay cost of re-balancing and

idle-time costs of not re-balancing.

t

cost

=

Z

t

0

�

n:i� B

2

+

J

n:i

�

dt =

Bn:i:t

2

+

J:t

n:i

(1)

P2-H-4



Where i is the time taken for each iteration,

B is the rate of increase of imbalance across

the processors and J is the re-balancing time.

The re-balancing time is then minimised with

respect to n (see equation 2). The model (equa-

tion 3) predicts an optimal value for n that min-

imises the run-time prediction function. Re-

distribution will be performed n iteration after

the previous re-distribution.

dt

dn

=

Bit

2

�

Jt

n

2

i

= 0 (2)

n =

s

2J

Bi

2

(3)

2.3 Work Transfer Calculation

After determining that it is advantageous to load

balance, the amount of work-load that must be

transferred from one processor to another must

be calculated. The parallel mesh-partitioning

tool JOSTLE provides a highly localised optimi-

sation algorithm with graph reduction to both

accelerate the optimisation and, perhaps more

importantly, provide a more global perception

in a manner analogous to multigrid techniques.

Most signi�cantly for this work, JOSTLE itera-

tively optimises and, if necessary, load balances

an The load balance information is indicated by

a weighted graph of the primary mesh entity

type that is passed to JOSTLE together with

the current processor ownership array of the pri-

mary entity type. JOSTLE will then attempt to

optimise the balance of these weights in a parti-

tion that minimises the amount of communica-

tion and minimises data migration in returning a

new processor ownership array indicating where

the data should move.

Using the ownership array for primary entity

types the ownership arrays for the secondary

entity types are updated (eg. faces and nodes

based on an element's partition). The only con-

cern here, which will limit the amount of work-

load being transferred, is when the amount of

data transferred exceeds the available memory

on the processor involved. Only a few current

parallel architectures provide support for virtual

memory, so there is �xed limit on the amount of

available memory at each computer. Even if vir-

tual memory is provided, the cost of exceeding

the amount of physical memory may well surpass

the cost of the load imbalance.

2.4 Data Migration

A dynamic load-balancing framework must also

provide a mechanism for actually moving the

data from one processor to another. This in-

cludes identifying and updating the data asso-

ciated with each moved entity, such as an ele-

ment's vertices, temperature, pressure, etc. The

load balancing algorithm and consequent data

movement must be very fast in comparison to

the overall run-time since the algorithm and the

consequent load migration may be performed

frequently during the run time. Load rebalanc-

ing will only provide a performance gain if the

time to rebalance is less than the decrease in run

time consequent from rebalancing the code. It is

therefore important to relate the overhead cost

of remapping with the expected performance

gain.

One of the important goals of distributed

memory parallelisation is to allow scalability of

memory so that, as processor numbers are in-

creased, the size of mesh that can be handled

also increases. This implies the use of locally

numbered entities which compounds the di�-

culty of moving data between processors. The

communication is implemented in two phases,

one constructs a movement set (within a pro-

cessor) and a communication set (between pro-

cessors) listing where entity numbers are to

be sent/received to/from which processor, and

other performs the communication using that

communication set for a particular variable.

Some arrays (particularly geometry pointer ar-

rays themselves) have to be converted to global

numbers before any movement can take place.

The data structures required for the parallel ex-

ecution and domain decomposition consist of the

local to global numbering array which stores the

original global number of locally numbered en-

tity. Hence, this local to global numbering ar-

ray can be used to convert all the pointer arrays

from local to global numbers. Following the con-

struction of the new partition, the pointer arrays

must be renumbered to the new local numbering

scheme.

P2-H-5



3 Results

The dynamic load balancing algorithm has been

successfully implemented in PHYSICA at the

time-step loop level (see �gure 1). It has been

tested with a solidi�cation test case which mod-

els a cooling metal bar. The bar begins all liquid

at a temperature just above solidi�cation and is

cooled from one end so that a solidi�cation front

moves along the bar. After 30 time-steps, the

bar is almost completely solid (Figure 2).

0 5 10 15 20 25 30
time-step

0

2000

4000

6000

8000

nu
m

be
r 

of
 e

le
m

en
ts

Solid
Liquid

Figure 2: Solidi�cation of a cooling bar

0 10 20 30
time-step

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

tim
e 

pe
r 

tim
e-

st
ep

 (
se

cs
)

Proc 1

Proc 2

Proc 3

Proc 4

Figure 3: Time-step time without dynamic load

balancing

Figure 3 shows the wall-clock time per time-

step for each processor without DLB and Fig-

ure 4 shows the times with DLB. It can be seen

that in Figure 3 the overall run-time is restricted

by the load imbalance leading to a time per time-

step of around 80 seconds. Figure 4 shows the

initial time per time-step correspondingly at al-

most 80 seconds being steadily reduced to a �nal

�gure of less than 60 seconds. The migration of

0 10 20 30
time-step

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

tim
e 

pe
r 

tim
e-

st
ep

 (
se

cs
)

Proc 1

Proc 2

Proc 3

Proc 4

Figure 4: Time-step time with dynamic load bal-

ancing

mesh elements that produces this improvement

is shown in Figure 5. Here the steps in the curves

are the points at which the DLB algorithm has

chosen to migrate work. A 20% reduction in the

overall run time produced by DLB is shown in

Figure 6

0 10 20 30
time-step

0

1000

2000

3000

nu
m

be
r 

of
 e

le
m

en
ts

Proc 1

Proc 2

Proc 3

Proc 3

Figure 5: Number of elements on processors

4 Conclusion

For a given problem then as P increases the

importance of load balance in measured par-

allel performance becomes increasingly signi�-

cant. For dynamic inhomogeneous load imbal-

ances characteristic of multi-physics problems it

may not be possible to obtain a good load bal-

ance. Nevertheless it is clear that DLB can re-

duce the a load imbalance in an initial parti-

tion and so provide a worthwhile performance

improvement.

P2-H-6



0 10 20 30
time-step

0.0

500.0

1000.0

1500.0

2000.0

2500.0

ru
n-

tim
e 

(s
ec

s)

static load balancing

dynamic load balancing

Figure 6: Overall run-time

The development of parallel JOSTLE has pro-

vided an opportunity to advance the state of

the art in practical unstructured mesh paral-

lel applications and in particular dynamic load

balancing. This development has been driven

by, amongst other things, the demands of both

CAPTools and PHYSICA, which �ll the role

of user to provided JOSTLE with a require-

ment de�nition, user feedback and test vehicles

to both verify and validate development. The

strength of this synergy is reinforced by con-

tinual input from CAPTools and JOSTLE to

the development within parallel PHYSICA of

strategies for generic, automatable and robust

dynamic load balancing.

The DLB scheme in this paper has conse-

quently been developed and tested in PHYSICA

using test cases that illustrate the challenging

issues in load balancing for dynamic inhomoge-

neous problems. Information extracted at run-

time is used to continuously monitor and migrate

the work load as the developing solution causes

the work load to move across the problem space.

The resulting methodology is not only success-

ful in reducing run-time but is also su�ciently

generic to be amenable to automatic parallelisa-

tion in CAPTools.

References

[1] A. Arulananthan, S.P. Johnson, K. Mc-

Manus, C. Walshaw, and M. Cross. A

generic strategy for dynamic load balanc-

ing of distributed memory parallel computa-

tional mechanics using unstructured meshes.

In Parallel Computational Fluid Dynamics,

recent developments and advances using par-

allel computers, pages 43{50, 1998. Proc Par-

allel CFD 1997.

[2] M. Cross, P. Chow, C. Bailey, N. Croft,

J. Ewer, P. Leggett, K. McManus, and K. A.

Pericleous. PHYSICA - a software environ-

ment for the modelling of multi-physics phe-

nomena. In Proc ICIAM 1995, 1996.

[3] E. W. Evans, S. P. Johnson, P. F. Leggett,

and M. Cross. Automatic generation

of multi-dimensionally partitioned parallel

CFD code in a parallelisation tool. In Proc.

PCFD'97. Elsevier Science Publishers B.V.,

1997.

[4] S. P. Johnson, M. Cross, and M. G. Everett.

Exploitation of symbolic information in in-

terprocedural dependence analysis. Parallel

Computing, 22:197{226, 1996.

[5] S. P. Johnson, C. S. Ierotheou, and M. Cross.

Automatic parallel code generation for mes-

sage passing on distributed memory systems.

Parallel Computing, 22:227{258, 1996.

[6] Leslie G. Valiant. A bridging model for par-

allel computation. Communications of the

ACM, pages 103{111, August 1990.

[7] J. Watts. A practical approach to dynamic

load balancing. Master's thesis, Scalable

Concurrent Programming Laboratory, Cali-

fornia Institute of Technology, 1995.

P2-H-7


