AIDIDILIIED
AMATTHIEAMATTCAL
ARDIDIEILILIRNG

ELSEVIER Applied Mathematical Modelling 25 (2000) 83-98

www.elsevier.nl/locate/apm

Dynamic load-balancing of finite element applications with the
DRAMA library

A. Basermann ?, J. Clinckemaillie ®, T. Coupez , J. Fingberg ?, H. Digonnet °,
R. Ducloux ¢, J.-M. Gratien °, U. Hartmann 2, G. Lonsdale **, B. Maerten ¢,
D. Roose ¢, C. Walshaw ©

% C &C Research Laboratories, NEC Europe Ltd., Rathausallee 10, D-53757 St. Augustin, Germany
® ESI S.A., Rue Saarinen 20, Silic 270, 94578 Rungis Cedex, France
¢ CEMEF (Ecole des Mines/Armines), Rue Claude Dauness, BP 207, 06904 Sophia Antipolis, France
4 Transvalor S.A., Les Espaces Delta, BP037, 06901 Sophia Antipolis, France
¢ K.U. Leuven, Department of Computer Science, Celestijnenlaan 2004, B-3001 Heverlee-Leuven, Belgium
T Centre for Numerical Modelling and Process Analysis, University of Greenwich, Park Row, Greenwich,
London SEI10 9LS, UK

Received 1 June 2000; accepted 1 August 2000

Abstract

The DRAMA library, developed within the European Commission funded (ESPRIT) project DRAMA, supports
dynamic load-balancing for parallel (message-passing) mesh-based applications. The target applications are those with
dynamic and solution-adaptive features. The focus within the DRAMA project was on finite element simulation codes
for structural mechanics. An introduction to the DRAMA library will illustrate that the very general cost model and
the interface designed specifically for application requirements provide simplified and effective access to a range of
parallel partitioners. The main body of the paper will demonstrate the ability to provide dynamic load-balancing for
parallel FEM problems that include: adaptive meshing, re-meshing, the need for multi-phase partitioning. © 2000
Elsevier Science Inc. All rights reserved.

Keywords: Dynamic load-balancing; Software library; Mesh partitioning; Finite element

1. Introduction

In many areas of simulation, a crucial component for efficient numerical computations is the
use of solution-driven adaptive features: locally adapted meshing or re-meshing; dynamically
changing computational tasks. The full advantages of high performance computing (HPC)
technology will thus only be able to be exploited when efficient parallel adaptive solvers can be
realised. As discussed in [1], the resulting requirement for HPC software is dynamic load-
balancing, which for many mesh-based applications means dynamic mesh re-partitioning.

* Corresponding author.
E-mail address: lonsdale@ccrl-nece.technopark.gmd.de (G. Lonsdale).

0307-904X/00/$ - see front matter © 2000 Elsevier Science Inc. All rights reserved.
PI: S0307-904X(00)00043-3

84 A. Basermann et al. | Appl. Math. Modelling 25 (2000) 83-98

Major advances have been made in recent years in the two areas which formed the starting
point for the activities in the DRAMA project [2]: the development of parallel mesh-partitioning
algorithms suitable for dynamic re-partitioning (re-allocation of sub-meshes to processes at run-
time); the migration and optimisation of industrial-strength simulation codes to HPC platforms
using the message-passing paradigm. The DRAMA project brought together the developments in
parallel partitioning and parallel FE applications to ensure that the potential of scalable com-
puting can be achieved for fully-functional industrial simulation, which includes efficient adaptive
meshing (and re-meshing) options. The parallel dynamic re-partitioning routines can also handle
the full complexity and range of finite elements as used in industrial structural mechanics codes, as
exemplified by the applications within the project.

The central product of the project was the DRAMA Library [3,4] comprising various tools for
dynamic re-partitioning of unstructured finite element applications. The target applications are
those using parallelisation based on a partitioning of the mesh into sub-domains (irrespective of
the methodology chosen to implement the distribution of computations). The core library
functions perform a parallel computation of a mesh re-allocation that will re-balance the costs of
the application code based on the DRAMA cost model. The DRAMA cost model is able to take
account of dynamically changing computational and communication requirements. Furthermore,
it is formulated in such a way that all information can be provided by the application based on its
actual local data and measured costs (via code instrumentation). The library provides the ap-
plication program sufficient information to enable an efficient migration of the data between
processes. Section 2 of this paper will give an introduction to the format of the library and in-
dicate how it can be exploited within application codes.

Via the DRAMA Library, dynamic load-balancing can be achieved which enables scalable,
efficient parallel FE applications, even with adaptive mesh refinement (coarsening) and re-
meshing. As a by-product of this approach, a fully parallel mesh generator has been developed
that exploits the parallel re-partitioning of adaptively generated meshes. The mesh re-allocation
approach to dynamic load balancing has been demonstrated and validated by the leading in-
dustrial codes PAM-CRASH (for crashworthiness simulation, [5,6]), PAM-STAMP (for metal
stamping/deep-drawing and related simulations [7,8]), FORGE3 (for forging with viscoplastic
incompressible materials, [9,10]). Section 3 will present parallel performance behaviour for the
above applications using the DRAMA library.

Despite this emphasis on the validation codes within the project, the library has been designed
to be general purpose. With the final DRAMA library accessible as public domain software [2], it
is hoped that a wide range of applications will be able to make use of the project results.

2. The DRAMA library

The DRAMA Library is designed to be called by parallel message-passing (MPI) mesh-based
(and in particular finite element) applications. The ‘expectation’ of such applications is for the
rapid provision of information about:

(a) a re-partitioning of the mesh which balances the costs occurring in the application;

(b) the interaction between processes required to achieve the re-partitioning.
Given the normal complexity and application dependence of such algorithms, the actual data
migration would not be expected of the library. Thus, the DRAMA library and its re-partitioning
algorithms must be efficient, parallel (operating on distributed data) and must also take the
current partition into account, in order to avoid high communication costs during the resulting
data migration. Furthermore, it should be based on actual occurring costs, rather than some

A. Basermann et al. | Appl. Math. Modelling 25 (2000) 83-98 85

abstract heuristic. The library design and re-partitioning modules included have taken these re-
quirements into account by the careful definition of the cost model and library interface.

2.1. The DRAMA cost model and library interface

Full details of the cost model and library interface can be found in [11,12]. The DRAMA
Library is written in C with message-passing via MPI. The library may be called by applications
written in both Fortran and C.

The interface between the application code and the library is designed around the DRAMA
cost model (which results in an objective function for the load-balancing re-partitioning algo-
rithms) and the instrumentation of the application code to specify current and future compu-
tational and communication costs. The DRAMA cost model provides a measure of the quality
of the current distribution and allows the prediction of the effect on the performance of moving
some parts of the mesh to other processes. Calculation and communication speeds of the
processors are taken into account by a combination of hardware specific parameters and costs
that are based on time measurements and enumeration (e.g. byte counts for data exchange)
provided by application code instrumentation. Heterogeneous machine architectures can also be
taken into account within the cost model by the provision of processor-specific parameters for
computation and communication characteristics (though support within the partitioners is still
under development, see for example [13]). The essential feature is that the cost model is mesh-
based, so that it is able to take account of the various workload contributions and commu-
nication dependencies that can occur in finite element applications. Hence, the DRAMA cost
model includes both per element and per node computational costs and element—element, node—
node, and element-node data dependencies. Indeed, within a finite element code, part of the
computations may be performed element-wise, for example, a matrix-assembly phase, while
other operations are node-based, such as the update of physical variables and nodal co-ordi-
nates or the solution of systems of linear equations. Furthermore, the inter-sub-domain com-
munication is frequently carried out using node lists.

In addition to data dependencies between neighbouring elements and nodes in the mesh, de-
pendencies between arbitrary parts of the mesh can occur. For the PAM-CRASH code, such data
dependencies originate within the contact-impact algorithms when the penetration of mesh
segments by non-connected nodes is detected and corrected. The DRAMA cost model (and of
course the library interface) allows the construction of ‘virtual elements’ which represent the
occurring costs of such dependencies.

Different algorithmic parts in parallel application codes that are separated by explicit syn-
chronisation points are defined as phases within the DRAMA cost model. The total cost is then
given by the sum, over the phases, of the maximum cost, over all processes, per phase. The load-
imbalance for each phase is the ratio of the maximum to average process costs for that phase.

The library contains various partitioning modules plus modules to provide the interface to the
full DRAMA input mesh and the cost monitoring parameters and to deliver the full DRAMA
output mesh and data migration information (old <+ new mesh relationships). These new-to-old
and old-to-new relations are necessary because the DRAMA library migrates only the mesh
description. Subsequently, the application program has to migrate the data (temperature, stress,
velocity, etc.) associated with the mesh.

In addition to the modules described above, the DRAMA library also contains some aux-
iliary functions. One such function is represented by routines to improve the numbering of
elements and nodes, in order to reduce the computational time or the memory requirements
within the application (e.g. by minimising the number of cache misses or the bandwidth of the

86 A. Basermann et al. | Appl. Math. Modelling 25 (2000) 83-98

system matrix). In addition, several routines are provided which can be used to force sub-do-
main boundary re-location as a support tool for parallel re-meshing of the form described in
Section 3.3.

2.2. Re-partitioning modules

Several types of mesh re-partitioners are available in the DRAMA library, based on mesh-
migration, graph partitioning or co-ordinate partitioning. In addition to the references given
below, detailed information can be found in the project deliverables [14,15].

The mesh-migration module migrates parts of the mesh to other sub-domains, using an iter-
ative procedure in which pairs of processes perform load-balancing, using the DRAMA cost
model as objective function. While theoretical convergence proofs show that in the worst case the
number of iterations grows with the square of the number of processes, practical experience with
finite element meshes shows that only a few iterations are needed to achieve nearly perfect load
balance. For further information see [16,17].

The geometric partitioning module is based on recursive co-ordinate bisection (RCB). Al-
though it is generally accepted that such a partitioner produces less than optimal partitions in
comparison with more sophisticated techniques, the approach offers some interesting features:
speed of execution, preservation of geometric proximity, moderate memory requirements. The
RCB implementation in the DRAMA library is based on the version of Nakhimovski [18], which
uses buckets (intervals on the co-ordinate axes) to reduce edge cut and also exploits the unbal-
anced recursive bisection of Jones and Plasman [19] to reduce data transfer.

The third mesh re-partitioning module is based on existing software packages for parallel
graph re-partitioning: PARMETIS, developed by Karypis et al., University of Minneapolis
[20,21] and PJOSTLE, developed by Walshaw, University of Greenwich [22]. PARMETIS is
included in the DRAMA library, and the co-operation within the project with the University of
Greenwich has led to a DRAMA interface to a modified version of PIOSTLE. Both packages
contain recent developments enabling multi-constraint and multi-phase partitioning (see [23-25]
and Section 3.2). Since the DRAMA library interface is completely mesh-based, a layer has been
created around the graph re-partitioning modules. This layer within the library constructs a graph
from the mesh-based input information and re-constructs from the output of the graph re-par-
titioners mesh-based information, to be used by the application program to perform the actual
data migration.

Since the majority of the results presented in this paper are obtained with a graph-based re-
partitioner, we now give further details of this module.

2.2.1. Graph-based re-partitioning methods

Both PARMETIS and PJOSTLE use multi-level techniques, in which a hierarchy of coarser
graphs is constructed. At the coarsest level the graph is (re-)partitioned and during the un-
coarsening process the partitioning is refined. The re-partitioning of the coarsest graph is based on
a diffusion scheme. PJOSTLE uses the diffusion algorithm of Hu and Blake [26], which has a
‘global view’ of the optimisation problem, is synchronous and is best suited for applications
whose load does not change excessively at each iteration. PARMETIS uses a wavefront diffusion
variant [21,27], which is better suited to handle more unbalanced situations. PARMETIS also
allows the use of a diffusion scheme that only has a ‘local view’, which works asynchronously and
is highly parallel in nature. However, the local view might lead to a decrease in quality of the
partitioning and thus to a higher run time of the application.

A. Basermann et al. | Appl. Math. Modelling 25 (2000) 83-98 87

During the coarsening process, graph vertices are gathered together locally in each sub-domain
to form ‘coarse graph vertices’. PJOSTLE also allows global gathering, i.e. vertices can be
gathered over the sub-domain interfaces.

Besides the diffusion-based techniques, PARMETIS provides two routines that compute
completely new partitions (c.f. static partitioning) and re-map these intelligently onto the pro-
cesses in order to minimise migration [27]. This approach is well suited for highly unbalanced
cases.

2.2.2. Mesh to graph conversion

Within the DRAMA library, the mesh is converted in parallel into a distributed weighted
graph. The vertex weights correspond to calculation costs and edge weights correspond to po-
tential communication costs. These weights are taken from the data provided through the library
interface and reflect the types of contributing nodes and elements occurring in the mesh.

Different graph representations can be selected, see Fig. 1. The selection should be based on the
application requirements (speed vs. partition quality, available memory), the cost function model
and the accuracy to which the cost model should be approximated. While the graph should
represent a sufficiently good approximation of the cost model, experience shows that using a more
accurate representation of the cost function does not always lead to a better partition, since the
optimisation problem becomes more difficult to solve.

2.2.2.1. Dual graph or element graph. The dual of the mesh is a widely used graph representation,
where the weighted graph vertices correspond to mesh elements and the associated calculation
costs. The edges represent the potential communication between neighbouring elements. Vertices
are connected by an edge if the corresponding elements share an edge (in 2D) or a face (in 3D).

AN

AVAV
N\

Fig. 1. A simple mesh and various graph representations. Middle row: dual graph; extended dual graph. Bottom row:
nodal graph; combined graph.

88 A. Basermann et al. | Appl. Math. Modelling 25 (2000) 83-98

The default option is that only the element-based calculation costs are taken into account, ne-
glecting the node-based calculation costs. However, DRAMA also allows the distribution of the
node-based calculation costs to the graph vertices (corresponding to elements).

2.2.2.2. Extended dual graph. For meshes with elements of different dimensions, the potential
communication cannot be well represented by the dual graph. In the extended dual graph, graph
vertices are connected by an edge when the corresponding elements share one or more nodes.
Hence, certain connections between sub-domains that are lost in the classical dual graph, in-
cluding connections between elements of different dimensions, are maintained. However, the
extended dual graph can become very complex, requiring a lot of memory, especially for 3D
tetrahedral meshes.

2.2.2.3. Generalised dual graph. This graph lies between the classical dual graph and the extended
dual graph. As with the extended dual graph, it is well suited for meshes with different element
types. However, not all elements sharing a node are joined by an edge of the graph. An element is
only connected to those neighbouring elements which share a (local) maximum number of nodes.

2.2.2.4. Nodal graph. Here graph vertices correspond to mesh nodes and vertices are connected if
they share an element. The default option is that only the node-based calculation costs are taken
into account, but DRAMA also allows the distribution of the element-based calculation costs
over the graph vertices (corresponding to nodes).

2.2.2.5. Combined graph. In this graph, both elements and nodes are represented by vertices, al-
lowing a good representation of all calculation costs. Since finite element applications often use
node lists for inter-process communication, graph edges represent communication requirements
between elements and nodes. Hence, this graph is a simplification of the general combined graph
that would have all kinds of element—element, node—node, and element—-node connections.
Note that in order to construct the graph from the mesh, the ‘inverse connectivity information’
must be computed. While the ‘connectivity information’ gives for each element the list of nodes
belonging to that element, the ‘inverse connectivity information’ gives for each node the list of
elements to which it belongs. For each sub-domain, the inverse connectivity is determined for
both local and non-local nodes, which requires communication between processes storing
neighbouring sub-domains.

2.2.3. Graph to mesh conversion

The output of graph partitioners is just an array indicating for each graph vertex to which
process (sub-domain) it should be migrated. In the case of the dual graph, this array only gives a
new distribution for the mesh elements, while a new distribution for the nodes still has to be
determined. A similar situation holds in the case that the nodal graph has been used. Within the
DRAMA library, the new distribution of all mesh data is determined, along with a new num-
bering, and the old-to-new and new-to-old relations between the old and new partitioning of the
mesh. Note that the computation of both the new numbering and the old-to-new and new-to-old
relations requires communication.

3. Performance of finite element applications with DRAMA

The applications used to validate the DRAMA approach and library within the project
are representative of a range of finite element software having a natural requirement for a

A. Basermann et al. | Appl. Math. Modelling 25 (2000) 83-98 89

re-partitioning library as parallelisation aid. The simulation codes use time-marching as basic
solution procedure and both explicit (PAM-CRASH/-STAMP) and implicit (FORGE3) time-
integration methods are included. Causes of load-imbalance, and resulting degradation of
scalability, are: (a) a dynamic behaviour of (element-based) computational cost and of the
communication patterns; (b) meshes which are changing during the calculation — adaptive
meshing or re-meshing, including re-shaping, refinement and de-refinement. The self-impacting
contact-impact algorithms used in PAM-CRASH are extreme cases of the former. Adaptive
meshing is essential for codes like FORGE3 or PAM-STAMP where the large deformations
would otherwise result in extremely severe distortions of the mesh elements.

3.1. Memory requirements of the library

Before describing execution times and partitioning quality results for benchmark test cases, we
comment briefly on the memory requirements of the DRAMA library. A detailed analysis of the
memory requirements of both the graph-based re-partitioning module and the mesh-migration
module is given in [15]. The results can be summarised as follows:

(a) Graph-based re-partitioning module. An important drawback of the graph-based re-parti-
tioning component of the DRAMA library is the high memory requirement. The inverse con-
nectivity, needed to construct the graph representation of the mesh, requires a large amount of
extra memory, but the largest amount of extra memory is required when calling PARMETIS or
PJOSTLE. Both tools require an additional memory that is proportional to the number of graph
vertices and edges. Precise estimates of the memory requirements are difficult to compute because
of the multi-level approach employed. A great deal depends on the mesh and its distribution of
elements and nodes. The graph structure will influence the coarsening process and thus also the
amount of memory used. For single phase partitioning, using reasonable assumptions for the
reduction of the number of vertices during the graph coarsening, the following estimate can be
given for the maximum memory usage per process (sub-domain), mem_max, in bytes:

mem_max = 8§ nelem + § nconn + 12 nnode + 80 nvtx + 56 nedge,

where nelem is the number of local elements, nconn the length of the mesh connectivity list, nnode
the number of local nodes, nvtx and nedge are the numbers of local graph vertices and graph
edges (it is assumed that co-ordinates are stored as 32-bit floating point numbers).

For the dual graph representation of a tetrahedral mesh, we have nedge < nconn = 4 nelem.
Then the estimate simplifies to

mem_max = 344 nelem + 12 nnode.

Using the nodal graph for a typical FORGE3 mesh, the number of edges is about twelve times the
number of nodes. The number of elements is usually four to five times the number of nodes. This
leads to the estimate

mem_max = 40 nelem + 764 nnode.
The combined graph would lead to the estimate
mem_max = 344 nelem + 316 nnode

but experiments show that there is no need to use the combined graph in case of a ‘homogeneous’
tetrahedral mesh.

90 A. Basermann et al. | Appl. Math. Modelling 25 (2000) 83-98

Experiments with FORGES3 tetrahedral meshes show that the derived dual and nodal graphs
coarsen very well (coarsening fraction = 0.55). Taking this into account, we obtain the following
sharp estimates:

mem._max = 318 nelem + 12 nnode
for the dual graph, and
mem_max = 40 nelem + 668 nnode

for the nodal graph. A comparison between the latter estimates and the actual memory re-
quirements indicates that the formulae above lead to a slight underestimation of the memory
requirements (less than 10%).

(b) Mesh-migration module. The mesh-migration module (see Section 2.2) also needs the inverse
connectivity information. A detailed analysis shows that the memory requirements for tetrahedral
meshes, as used by FORGE3, are

mem_max = 92 nelem + 44 nnode

which is considerably less than those for the graph-based re-partitioning module, but still high
compared with the mesh itself.

In order to reduce the memory required by the DRAMA library, the library allows memory
blocks (work space) to be passed to it from the application or the dynamic allocation of any
additional memory (see [12]). Although the memory requirements for the DRAMA library are
very high, one has to take into account that (subsequently, when the additional memory used by
the DRAMA library is de-allocated or returned) the application program may also need a large
amount of additional memory, in order to be able to migrate parts of the mesh data. Clearly, if
the application data use (nearly) all memory available, dynamic load balancing via mesh re-
partitioning is not possible.

3.2. PAM-CRASH & PAM-STAMP

The PAM-CRASH and PAM-STAMP codes are two of the ESI Group products that are built
around the PAM-SOLID core solver libraries. This means that they share the same basic algo-
rithms and computational kernels, but include different algorithms and routines for application-
specific functions. The most crucial components within the crashworthiness code PAM-CRASH
are the contact-impact algorithms whose main feature, from the DRAMA viewpoint, is the dy-
namically changing computation and communication costs. Contact-impact algorithms are also
crucial to the simulations performed by PAM-STAMP, but a much more significant paralleli-
sation requirement is the efficient handling of adaptive meshing since around 90% of stamping
applications rely on the adaptive meshing features. In contrast to the re-meshing approach
adopted by FORGE3, PAM-STAMP uses a mesh-refinement (and coarsening) strategy based on
the original user-defined mesh.

Leaving details of the algorithms and their parallelisation to [5,6] and the references therein, a
summary of the solution methods of the PAM-SOLID-based codes is as follows: an explicit time-
integration; a non-linear finite element method using a Lagrangian unstructured mesh; element-
wise stress—strain calculations supplemented by penalty method contact-impact algorithms to
detect and correct penetration of structural components.

The PAM-SOLID parallelisation includes several synchronisation points, which require multi-
partitioning. A global synchronisation separates the stress—strain and contact—-impact calculations
and further communications within each time-marching cycle result in a multi-phase application.

A. Basermann et al. | Appl. Math. Modelling 25 (2000) 83-98 91

For simplicity, and taking the magnitudes of computational contributions into account, the codes
are currently handled as a two-phase application: contact-impact and stress—strain plus time-
integration (and all remaining calculations).

The DRAMA library handles multi-phase applications by producing a partition which cor-
rectly accounts for costs arising in the separate phases. An alternative approach would be to
independently partition the mesh (or sub-meshes) per phase and perform data migration between
phases. This approach has been successfully exploited for solid dynamics simulations on large-
scale parallel machines for the Pronto code [28].

3.2.1. PAM-CRASH with multi-partitioning

In this section we present results for multi-partitioning [23-25] of meshes produced by PAM-
CRASH simulations with industrial benchmark models (courtesy of Audi AG and BMW AGQG).
The objective is to demonstrate that the DRAMA library can be effectively employed for multi-
phase applications. Dynamic load-balancing with DRAMA for PAM-CRASH is functional, and
the overheads of re-partitioning have been shown not to be significant: on 8 compute nodes of the
NEC Cenju-4 the total elapsed time of 17040 s included only 77 s for the DRAMA library calls
and subsequent data migration. However, the possible total gains that can be achieved with the
existing contact-impact algorithmic implementation in PAM-CRASH are limited:

(a) for small numbers of processes, the contact-impact phase of the calculations has been op-
timised in recent years to the point where the total run-time is very much dominated by the
already well-balanced stress—strain calculations;

(b) the existence of a non-scaling computational section and (pseudo-) all-to-all communica-
tion, which cannot be handled by the DRAMA library’s partitioners, produces a dominating
cost for larger numbers of processes, particularly when the re-partitioning attempts to balance
the contact phase across many processes.

For this reason, full code performance results are not presented.

The various partitioning options used are given in Table 1, where all acronyms for the par-
ticular partitioning options are explained in [20-24]. Partitioner 6 is a single-phase partitioner
added for comparison.

Tables 2 and 3, for the Audi and BMW models, respectively, give the minimum, maximum and
mean total computational weights (as provided to the DRAMA Library from the application) for
a 16-domain partition. The cost categories ‘FE’ and ‘CO’ are the costs for the stress—strain
(+ time-integration) phase and the contact-impact phase. In addition to the total edge cut of the
partition, load imbalance factors (as given by the DRAMA Cost Model based on the application
parameters) per phase and in total are given. The load imbalance is defined as the ratio of the
maximum to average process costs, a perfect load balance giving a value of 1.0. Near perfect load
balance is achieved with the multi-partitioning approaches load imbalance of around 1% or less is

Table 1
Repartitioning methods
Method Partitioner
1 METIS_mCPartGraphkway, sequential
2 MJostle, sequential
3 MOC_PARMETIS_Partkway
4 MOC_PARMETIS_SR
5 Mjostle, parallel

(o)}

PARMETIS_RepartGDiffusion,single phase

92 A. Basermann et al. | Appl. Math. Modelling 25 (2000) 83-98

Table 2
Audi benchmark, computational weights per phase, cut edges and load imbalance factors
Method FE [min max] CO [min max] Edge cut Imbalance [FE CO] total
1 [10428 10437] [126 134] 2193 [1.000 1.011] 1.001
2 [9354 10536] [132 134] 3116 [1.001 1.011] 1.010
3 [10095 10548] [128 136] 2308 [1.011 1.026] 1.011
4 [10158 10632] [126 136] 2682 [1.019 1.026] 1.019
5 [10380 10518] [130 136] 2641 [1.008 1.026] 1.008
6 [9075 11070] [0 1128] 4154 [1.061 8.513] 1.155
Mean: 10432.1 Mean: 132.5
Table 3
BMW benchmark, computational weights per phase, cut edges and load imbalance factors
Method FE [min max] CO [min max] Edge cut Imbalance [FE CO] total
1 [19647 19653] [232 246] 4018 [1.000 1.006] 1.000
2 [17238 19992] [238 246] 8472 [1.017 1.006] 1.017
3 [19281 19857] [220 248] 4096 [1.010 1.014] 1.011
4 [19245 19848] [234 250] 4017 [1.010 1.022] 1.010
5 [19422 19953] [238 252] 5029 [1.015 1.030] 1.016
6 [18525 20706] [0 982] 6863 [1.054 4.014] 1.090
Mean: 19650 Mean: 244.6

achieved for both modules, in comparison with single phase results of 15% and 9% (for the Audi
and BMW models, respectively).

3.2.2. PAM-STAMP with parallel adaptive mesh refinement

Highly effective deployment of the DRAMA library with PAM-SOLID-based codes should be
expected with the PAM-STAMP code, since this code relies heavily on the use of adaptive
meshing, which will generate load imbalance within the stress—strain calculations. Furthermore,
the typical contact-impact algorithms used within PAM-STAMP applications display better
scaling properties than those used within PAM-CRASH and the calculations are fairly well
distributed across the elements. The results included below will show that the dynamic costs of the
adaptive finite elements are effectively re-partitioned using DRAMA.

Unfortunately, the full impact of dynamic load-balancing for PAM-STAMP cannot be dem-
onstrated with the parallel prototype integrated with the DRAMA library during the lifetime of
the project. The prototype code includes (physically unnecessary) nodal calculations for the time
integration of nodes corresponding to the elements modelling the tools: the ‘null shells’ which are
treated as rigid bodies and used to model the motion of the punch, die and blankholder. These
calculations are removed in more recent versions of the standard PAM-STAMP code. The impact
on the prototype PAM-STAMP with DRAMA was twofold: the normally dominant finite ele-
ment stress—strain calculations (upon which the design for the use of the DRAMA library in the
PAM-codes is based) become subsidiary to the null shell nodal costs; nodal costs remain
imbalanced since restrictions in the data migration and re-partitioning approach within the PAM-
codes mean that the DRAMA nodal partitions cannot be used. In addition, the parallel (message-
passing) version with adaptive meshing is a recently developed feature and currently subject to
robustness problems when more than one level of refinement is introduced (thus additionally
limiting the impact of re-partitioning).

A. Basermann et al. | Appl. Math. Modelling 25 (2000) 83-98 93

Although other options for handling the prototype code are available within the DRAMA
library (an example being node-by-node cost modelling), the fact that the future versions of
parallel PAM-STAMP will resolve the above issues meant that further investigation with the
prototype code was not deemed appropriate, nor was it feasible within the project time-frame.

The results presented in this section are taken from full PAM-STAMP simulations with an
industrial benchmark model: a general motors fender with an initial mesh having 5180 refinable
elements on the metal blank, which can result in around 30,000 elements at the end of the sim-
ulation, depending on the type of refinement parameters set. The cost analysis is only for the finite
element phase, which includes the use of adaptive mesh refinement. The cost modelling strategy
adopted for the locally refined meshes was to sum all costs for refined elements to produce a
modified cost for the original mesh element — this guarantees that parent—child element sets are
distributed to a process (which simplifies handling within the application code).

The performance presented in Fig. 2 is for the above model using 200 mesh refinement steps
(based on a 1° angle criterium) and a maximum of one refinement level (the final number of blank

#* FE cost without DRAMA
X FE cost with DRAMA i

o 2000 4000 s000 apoo 10000 12000 14000 16000 18000

Number of cycles

£S5 PAMVIEW 258.8

Fig. 2. Comparison of F.E. imbalance development (Ry, per cylce), for the Fender Benchmark with/without DRAMA
repartitioning on 8 compute nodes, NEC Cenju-4.

94 A. Basermann et al. | Appl. Math. Modelling 25 (2000) 83-98

shell elements is 10,146). DRAMA re-partitioning was performed at intervals of 4000 compu-
tational cycles.

Fig. 2 demonstrates the evolution of imbalance using the ratio of slowest (Ry.x) to average
(Ravg) times per process spent in the finite element routines, Ry,

Rbal — Rmax/Ravg-

The comparison is made between a standard run without DRAMA re-partitioning and the run
with DRAMA both using eight compute nodes on the NEC Cenju-4. Two issues are apparent: the
mesh refinement generates high imbalance in the early phases of the simulation that decreases as
the simulation proceeds; with values of Ry, close to 1.03 at the re-partitioning points (the mul-
tiples of 4000 cycles), DRAMA is very effectively balancing the FE costs.

The reason for decreasing imbalance over the length of the simulation is that the final mesh
includes refinement which is fairly equally distributed over the model. What is also clear is that
one would in practice use more frequent DRAMA re-partitioning. The DRAMA library actually
allows for monitoring of load imbalance, by using a computationally inexpensive cost/imbalance
prediction function, so that in practice one could perform re-partitioning at time points deter-
mined by the application at run time.

3.3. FORGE-3 and parallel meshing/re-meshing

FORGES3 from Transvalor is an implicit finite element code designed for the simulation of 3D
metal forming. It is able to simulate the large deformations of viscoplastic incompressible ma-
terials with unilateral contact conditions. The code is based on a stable mixed velocity/pressure
formulation using tetrahedral unstructured meshes and employs an implicit time stepping tech-
nique. The parallelisation of the full code, including adaptive re-meshing, uses a mesh partitioning
approach [9,10]. For forging simulations, the capability for re-meshing is a unique, competitive
advantage of the FORGES3 code. The 3D parallel re-meshing procedure requires a re-partitioning
stage, not only to avoid load imbalance but also to deal with the interface re-meshing.

A scalable parallel mesher/re-mesher has been developed by combining the DRAMA mesh-
migration module and the serial mesher, MTC, from CEMEF using the following strategy:

e Begin with a coarse mesh distributed (partitioned into sub-domains) over the processes.

e Re-mesh each sub-domain independently at fixed interfaces.

e Mark the nodes at the sub-domain boundaries which are to become internal nodes after re-
partitioning (to improve the mesh quality in terms of both element shape and size).

Do a re-partitioning step, whereby forcing the marked nodes to become internal nodes.
Mark the nodes to be re-meshed (the marked ones which were previously at the interfaces).
Re-mesh in the neighbourhood of the marked nodes.

Re-partition taking only computational costs into account and iterate if needed.

With this approach the number of operations is almost the same as in the sequential case. The
above strategy allows for the use of the existing sequential mesher on each process, while assuring
that partition-induced mesh features are removed.

The new parallel re-meshing strategy used in FORGE3 is similar to the parallel meshing al-
gorithm given above and is realised by calling DRAMA twice per computational cycle: first
before the re-meshing, specifying the nodes we want to be on the same sub-domain, then a second
time after the re-meshing to achieve a good load balance. This strategy was not foreseen at the
beginning of the DRAMA project, but has been made possible by the speed of the re-partitioning
and data migration, which takes only a few seconds (as can be seen in Section 3.3.1) while one
time step, or a re-meshing takes several minutes.

A. Basermann et al. | Appl. Math. Modelling 25 (2000) 83-98 95

3.3.1. Parallel mesh generation/re-meshing

Results are presented here for homogeneous refinement over all sub-domains. Commencing
with a mesh distributed over processes and given a new target mesh size, the re-mesher and the re-
partitioner are run successively until the size is satisfied and the partition is well balanced. The
parallel homogeneous refinement is defined by iteration between the two following steps:
e re-meshing with blocked interfaces;
e re-partitioning with migration of interfaces.
Performance figures are given in Table 4 for the parallel re-mesher with a 3D test case (executed
on the NEC Cenju-4). The test consists of dividing the mesh size by a factor 2. The initial mesh
has 4092 nodes and 20,418 elements and the final one around 22,000 nodes and 116,000 elements.

3.3.2. Parallel re-meshing with DRAMA for FORGE3

In addition to performance testing, the DRAMA-interfaced version of FORGE3 has been
validated for robustness and quality of the results produced using the standard FORGE3 vali-
dation test suite. With the FORGE3 strategy of local re-meshing combined with interface
movement, the most important aspect for validation of DRAMA use is that the final complete re-
meshing is achieved. Comparisons of shape, temperature field, strain and forging loads for the
pipe connector test case, which is the most difficult case from the re-meshing viewpoint, showed
that the simulation accuracy was maintained with the new version exploiting DRAMA.

Fig. 3 shows speed-ups on the pipe connector problem with FORGE3 using DRAMA, em-
ploying both the mesh migration module and graph partitioning (with ParMeTis), on a PC-cluster
at NEC, comprising dual processor Pentium-pro PCs with a Myrinet switch. Table 5 shows the
relative performance, for several examples from the validation suite, with respect to the parallel
FORGE3 code without DRAMA; as can be seen, significant computational savings are made.
The results in Table 5 were all produced on a 4-CPU, DEC SMP system, the meshes are all
relatively small (the Conrod case involves approximately 5000 tetrahedral elements, the other two
cases have initial tetrahedral meshes with around 5000 elements, which result in approximately
15,000 elements at the end of the simulation). For these meshes, the need for efficient handling of
re-partitioning is more pronounced than with larger meshes.

4. Concluding remarks

The results presented in Section 3 demonstrate that the DRAMA library can be used to
support dynamic load-balancing for complex mesh-based applications. The interface has been
designed to be appropriate for such applications and takes into account the possible need for
multi-phase partitioning.

With the release of the DRAMA library into the public domain, the aim of the DRAMA
project is to enable a widespread exploitation of the library as a tool to allow efficient use of HPC
platforms. By defining an interface for general mesh applications, with a choice of (state-of-the-

Table 4

Performance for the 3D test case on the NEC Cenju-4
proc 1 2 4 8 16
Re-meshing time (s) 1253 701 446 259 167
Re-partitioning time (s) 0 7 21 23 25
Total time (s) 1253 708 467 262 192
Speed-up 1 1.79 2.68 4.78 6.52

Efficiency 1.00 0.88 0.67 0.60 0.40

96 A. Basermann et al. | Appl. Math. Modelling 25 (2000) 83-98

18

14 1

12+

Speed-up
[o2]

- - ® - -mesh migration
——graph

0 5 10 15 20
No. Processors

o

Fig. 3. Speed-up for the pipe connector on the NEC PC-cluster. Results obtained with both the mesh migration and the
graph-based re-partitioning modules are presented.

Table 5
Comparisons of total elapsed times (in seconds) for three test cases with the parallel FORGE3 code: original and new
DRAMA versions

Case Conrod Pipe connector Tap fitting
Original version 5820 43500 54500
Drama version 4620 34040 36066

art) re-partitioning components, a large section of the scientific computing community will be able
to achieve scalable performance with their complex applications. The scope of the library ex-
ploitation is mesh-based applications that include dynamic and adaptive meshing or re-meshing
and/or dynamically changing computational loads on otherwise static meshes. Though the
DRAMA project focused on finite element codes, the mesh interface definition is also directly
applicable to finite volume codes.

Finally, it should be pointed out that the DRAMA library provides only a starting point for the
creation of efficient parallel (MPI-based) codes. There is still the need for the applications codes to
implement the data migration and to create data structures within their code that allow parallel
dynamic/adaptive mesh partitioning. Future extensions of the DRAMA library may include
additional support for the data migration within the application code. It is hoped that feedback
from DRAMA users will help to steer these and other future developments.

Acknowledgements

The DRAMA Consortium would like to thank the Department of Computer Science,
University of Minnesota for their ongoing co-operation in providing various versions of the
MeTis and ParMeTis software and all the participants in the three DRAMA Steering Workshops

A. Basermann et al. | Appl. Math. Modelling 25 (2000) 83-98 97

who assisted the progress of the project through many fruitful discussions. The support of the
European Commission through the ESPRIT IV (Long Term Research) Programme is gratefully
acknowledged.

References

(1]
(2]
(3]
(4]

(5]
(6]
(7]
(8]
&)

(10]

B. Hendrickson, K. Devine, Dynamic load balancing in computational mechanics, Comput. Meth. Appl. Mech.
Engrg., to appear.

The DRAMA Web-site:http://www.ccrl-nece.technopark.gmd.de/DRAMA/.

G. Lonsdale, et al., DRAMA: Dynamic re-allocation of meshes for parallel finite element applications, in:
Developments in Computational Mechanics with High Performance Computing, Proceedings of the Euro-CM-Par
99 Conference March 1999, Weimar, Civil-Comp Press, 1999.

B. Maerten, et al., DRAMA: a library for parallel dynamic load balancing of finite element applications, in:
P. Amestoy, et al. (Eds.), Euro-Par’ 99 Proceedings, Lecture Notes in Computer Science, vol. 1685, 1999, pp. 313—
316.

J. Clinckemaillie, et al., Performance issues of the parallel PAM-CRASH code, Int. J. Supercomput. Appl. High
Performance Comput. 11 (1) (1997) 3-11.

G. Lonsdale, et al., Programming crashworthiness simulation for parallel platforms, Math. Comput. Model. 31
(2000) 61-76.

E. Haug, et al.,, Transport vehicle crash safety and manufacturing simulation in the perspective of high
performance computing and networking, Future Generation Comput. Systems 10 (1994) 173-181.

E. Haug, et. al., Industrial sheet metal forming simulation using explicit finite element methods, FE-Simulation of
3D sheet metal forming process in automotive industry, VDI Berichte 8§94, Ziirich, Switzerland, 14-16 May 1991.
T. Coupez, S. Marie, From a direct solver to a parallel iterative solver in 3D forming simulation, Int. J.
Supercomput. Appl. High Performance Comput. 11 (4) (1997) 205-211.

T. Coupez, S. Marie, R. Ducloux, Parallel 3D simulation of forming processes including parallel remeshing and
reloading, in: J.-A. Dé sidéri, et al. (Eds.), Proceedings of Second ECCOMAS Conference on Numerical Methods
in Engineering 96, Wiley, 1996, pp. 738-743.

DRAMA Project Deliverable, D1.1b, Final DRAMA cost model, in [2], 1999.

] DRAMA Project Deliverable, D1.2¢, Updated library interface definition, in [2], 1999.

C. Walshaw, M. Cross, Multilevel mesh partitioning for heterogeneous communication networks, Future
Generation Comput. Systems, to appear.

DRAMA Project Deliverable, D1.3a, Report on re-partitioning algorithms and the DRAMA library, in [2], 1998.
DRAMA Project Deliverable, D1.3d, Final report on re-partitioning algorithms, in [2], 1999.

T. Coupez, Parallel adaptive remeshing in 3D moving mesh finite element, in: B.K. Soni, et al. (Eds.), Numerical
Grid Generation in Computational Field Simulation, vol. 1, Mississippi University, 1996, pp. 783-792.

T. Coupez, H. Digonnet, R. Ducloux, Parallel meshing and remeshing, Appl. Math. Modelling, this volume.

I. Nakhimovski, Bucked-based modification of the parallel recursive co-ordinate bisection algorithm, Linkoping
Electronic Articles in Computer and Information Science, ISSN 1401-9841, vol. 2(015), available via http://
www.ep.liu.se/ea/cis/1997/015/, 1997.

M.T. Jones, P.E. Plassman, Computational results for parallel unstructured mesh computations, Technical Report
UT-CS-94-248, Computer Science Department, University of Tennessee, 1994.

G. Karypis, K. Schloegel, V. Kumar, PARMETIS parallel graph partitioning and sparse matrix ordering library,
Version 2.0, Technical Report, Department of Computer Science, University of Minnesota, 1998.

K. Schloegel, G. Karypis, V. Kumar, Multilevel diffusion schemes for repartitioning of adaptive meshes, J. Parallel
Distrib. Comput. 47 (1997) 109-124.

C. Walshaw, M. Cross, M. Everett, Parallel dynamic graph partitioning for adaptive unstructured meshes,
J. Parallel Distrib. Comput. 47 (1997) 102-108.

G. Karypis, V. Kumar, Multilevel algorithms for multi-constraint graph partitioning, Technical Report TR-98-
019, Department of Computer Science, University of Minnesota, 1998.

C. Walshaw, M. Cross, K. McManus, Multiphase mesh partitioning, Appl. Math. Modelling, this volume.

A. Basermann, et al., Dynamic multi-partitioning for parallel finite element applications, in: E.H. Hollander et al.
(Eds.), Parallel Computing: Fundamentals and Applications, Proceedings of the ParCo99 Conference, Delft,
September 1999, Imperial College Press, 2000, pp. 259-266.

98 A. Basermann et al. | Appl. Math. Modelling 25 (2000) 83-98

[26] Y.F. Hu, R.J. Blake, An optimal dynamic load balancing algorithm, Technical Report DL-P-95-011, Daresbury
Laboratory, Warrington, UK, 1995.

[27] K. Schloegel, G. Karypis, V. Kumar, Dynamic repartitioning of adaptively refined meshes, in: Proceedings of the
Supercomputing *98. http://www.supercomp.org/sc98/, 1998.

[28] S.A. Attaway, et al., Transient solid dynamics simulations on the Sandia/Intel Teraflop computer, in: Pro-
ceedings of the ACM/IEEE SC97 Conference (available on CD-ROM from ACM Member Services, email:
orders@acm.org), Technical Paper, 1997.

