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Abstract: The DRAMA projed is a European Commission (ESPRIT)-funded projed which has
been initiated to support the take-up of large scale paralle simulation in industry by dealing with
one of the main problems which restricts the use of message-passng simulation codes - the
inability to perform dynamic load balancing. A concentration on message-passng parallelisation
corresponds to the target of addressng large scale and thus highly scalable parallel applications.
The central product of the projed will be a library comprising various tools for dynamic re-
partitioning o unstructured finite element applications. The particular focus of the project is on
the requirements of industrial Finite Element codes, with library evaluation and validation being
performed using industrial software packages, but codes using Finite Volume formulations will
also be able to make use of the projed results. The core library functions will perform a par allel
computation of a mesh re-allocation that will re-balance the costs of the application code based
on the DRAMA cost model. This paper will discuss the design features of the library, which
alow a general approach to load identification, modelling and minimisation. Results will be
presented which both justify the inclusion d single-phase/uni-constraint graph partition
components and paint ahead to the requirements for multi -phase/multi-constraint versions.
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1 Introduction

The dfectivenessof paralld computing has been clearly demonstrated for scientific applications
ranging from purely academic problems to simulation codes used within industrial design.
However, particularly in the latter area, the advancement beyond “exploratory installations’
requires fully efficient, fully scalable solutions to all problems of interest to the end-user and
involving all code functions. In many areas of simulation, a crucial component for efficient
numerical computations is the use of solution-driven adaptive features: locall y-adapted meshing
or re-meshing; dynamically changing computational tasks. The full advantages of HPC
techndogy will thus only be able to be exploited when efficient parallel adaptive solvers can be
realised. As discussed in [11], the resulting requirement for HPC software is for dynamic load
balancing, which for many mesh-based appli cations means dynamic mesh re-partitioning. The
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ESFRIT projedc DRAMA (projed No. 24953 “Dynamic re-alocation o meshes for paralld
Finite Element applications") has been initiated to addressthis isaue, with a particular focus being
the requirements of industrial Finite Element codes, but codes using Finite Volume formulations
will also be able to make use of the project results.

Given the importance of the theme and the generality of the requirement for dynamic load
balancing o HPC applicatiors, it is clear that the DRAMA objectives will be shared with aher
international developments. The following brief discusson highlights the diff erences between
DRAMA and aher activities and positions the projed’s approach w.r.t. those activities.

Two major aspects distinguish DRAMA from alternative approaches: the development of a
general purpose library; the evaluation and validation with leading commercial software for
industrial simulation. The latter feature, in addition to ensuring the industrial relevance of the
approach, includes date-of-the-art 3-D parallel adaptive meshing techndogy in development at
the DRAMA projed partner, CEMEF. Thelibrary approach is a most important distinction and a
strength o the projed, since it should ensure a widespread take-up d the projed results,
espedally since the final DRAMA library will be put into the puldic domain. A general-purpose
approach is also indicated as a future direction, though as an dbjed-oriented tool rather than a
standard library, in [11]. The alternative to the library approach is of course to develop load
balancing & mesh re-allocation qotions within a particular application and many groups are, and
have been, investigating such an approach.

As will be discussed in more detail below, the DRAMA library performs re-partitioning
of the mesh (based on all costs arising on that mesh), and supports the data re-all ocation with dd-
new mesh rumbering information. The partitioning o the mesh is maintained even when using
(appropriately interfaced and/or modified) graph partitioners inside the library, due to the mesh-
to-graph (and inverse mapping) components. Thus the projed is addressng weaknesses in graph
partitioning methods which are under discussion within state-of-the-art forums (see, for example,
[10)). It will be seenin Sedion 3 that the graph partitioning component is indeed able to minimise
mesh-based costs. Within the DRAMA library, two state-of-the-art tools will be included:
ParMETIS as an integral part and JOSTLE via a mmpatible interface (a form of "plug-and-play’
option). Thase two tools are widely acoepted and have a significant number of users (though
mainly for static partitioning).

A development that is to a certain extent complementary to the approach taken by DRAMA is the
PLUM environment ([4]). The PLUM environment for dynamically balancing a hierarchically
refined mesh focuses on minimising the costs of data repartitioning via a heuristic remapping
algorithm. It represents the mesh by a fixed dual graph (with variable weights to represent
refinement levels) of the coarsest mesh. A more general research environment, UG ([2]), alows
applications to build on paralld, multilevel components for unstructured meshes and includes
dynamic load balancing via the DDD tool ([3]). UG's primary aim is to be a tool for the
exploration of new discretisation schemes, solvers and error estimators. Consequences of the
focus on research are that Fortran interfacing hes nat yet been considered and absolute
performance (in terms of data structures allowing high gptimisation acrossall HPC platforms) has
not been a driving issue.

By performing dynamic mesh re-all ocation within the application, the DRAMA approach is to
increase the efficiency of that application and thus of its exploitation o the HPC system being
used. Thefocus on important simulation codes for industrial design is at the same time a focus on
applications for which the turn around time of individual jobs plays a critical role. Many projeds
and developments have taken an alternative route to dynamic load balancing, which is nat
diredly comparable with the DRAMA developments. Via interaction with the operating system
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they target the optimal use of the system resources rather than the scalability of individual
important applications.

Following an overview of the DRAMA projed, and in particular of the applications whose
requirements are helping to dive the library design, we will discusshow well a general library
and cost moddl is able to be used to capture the occurring costs and introduce new devel opments
which will be investigated to address the major shartcoming for some applications. separated
computational sections, for example due to multiple synchronisation points, which require a
“multi-phase’” or “multi-objedive” minimisation approach. Results will be presented which
illustrate that the graph partitioning components are able, through the mesh  graph
transformations, to minimise the DRAMA cost function. In addition to performance results for
paralld library execution on representative application meshes, it will be seen that initial results
with the full Forge3 code show total application gains when using the DRAMA library.

2 TheDRAMA Project

In the following, a brief introduction to the activities of the DRAMA project will be given. The
reader is referred to the project web-site [12] for further information about the projed and its
partners, and in particular to the (public) projed deliverables made available there. As dated
above, the central product of the projed will be the DRAMA Library. The library interface, and
underlying cost model, have been designed such that all information can be provided by the
application based on its actual local data and measured costs (via code instrumentation). This
aspect will be addressed for two o the “DRAMA applications’ in Sedion 3. An overview of
these applications, whose role in the project is to evaluate and vali date the DRAMA library, will
be given in Section 2.1. Section 2.2. summarises the design decisions taken in the construction d
the library. Detailed information concerning the DRAMA Cost model and library interface are
givenin[13,14,20,21].

2.1 The DRAMA Project Applications

The mesh re-allocation approach to dynamic load balancing will be demonstrated and vali dated
by the leading industrial codes PAM-CRASH (for crashworthiness $mulation), PAM-STAMP
(for metal stamping / deep-drawing and reated simulations), FORGE-3 (for forging with
viscoplastic incompresgble materials). Despite this emphasis on the validation codes within the
project, the library has been designed to be general purpose. All the DRAMA applications use
time-marching as basic solution procedure and both explicit (PAM-CRASH/-STAMP) and
implicit (FORGE3) methods are included. Causes of |oad-imbalance, and resulting degradation of
scalability, are: (a) a dynamic behaviour of computational cost per element and o the
communication patterns; (b) meshes which are changing during the calculation - adaptive
meshing o re-meshing, including reshaping, refinement and coarsening. The self-impacting
contact-impact algorithms used in PAM-CRASH are etreme cases of the former. Adaptive
meshing is essential for codes like FORGE3 or PAM-STAMP where the large deformations
would aherwiseresult in extremely severe distortions of the mesh e ements.

2.1.1 FORGE-3 & Parallel Adaptive Remeshing

FORGES3 from Transvalor is an implicit finite element code designed for the smulation o three
dimensional metal forming. It is able to simulate the large deformations of viscoplastic
incompressble materials with unilateral contact conditions. The code is based on a stable mixed
velocity/presaure formulation using tetrahedral unstructured meshes and employs an implicit time
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stepping technique. Central to the Newton iteration deali ng with the non-li nearity arising from the
behaviour of material and the unilateral contact condition is an iterative procedure based on a
conjugate residual method for the solution of the large linear system.

The paralelisation o the full code including adaptive re-meshing, was done within the
EUROPORT project ([24]) employing a mesh partitioning approach. For forging simulations, the
capabili ty for re-meshing is a unique, competitive advantage of the FORGE3 code. A functioning
3-D parallel reemeshing procedure has been established which requires a repartitioning stage
(‘element migration’), nat only to avoid load imbalance but also to deal with the interface re-
meshing. This has to date been achieved via acentralised re-all ocation process which becomes a
bottleneck, espedally for large problems or when a large number of processorsis used.

Thereader isreferred to [5,8,9] and the references therein for further information.

2.1.2 PAM-CRASH & PAM-STAMP

The PAM-CRASH and PAM-STAMP codes are two of the ESI/PS Group products that are built
around the PAM-SOLID core solver libraries. The most crucial components within the
crashworthiness code PAM-CRASH are the contact-impact algorithms whaose main feature, from
the DRAMA viewpoint, is the dynamically changing computation and communications costs.
Contact-impact algorithms are also crucial to the simulations performed by PAM-STAMP, but
the much more significant parallelisation requirement is the dficient handling of adaptive
meshing since around 90% of stamping applications rely on the adaptive meshing features. In
contrast to the re-meshing approach adopted by FORGES3, PAM-STAMP uses a mesh-refinement
(and coarsening) strategy based on the original user-defined mesh. The current message-passng
versions have been further developed from the prototypes produced within the EUROPORT
([24]) and EUROPORT-D ([15]) projects.

Leaving detail s of the algorithms and their parall€lisation to [6,19] and the references therein, a
summary of the solution methods of the PAM-SOLID-based codes is as foll ows: an explicit time-
integration; a non-linear finite element method using a Lagrangian unstructured mesh; el ement-
wise stressstrain calculations supdemented by penalty method contact-impact algorithms to
deted and correct penetration o structural components.

2.2 The DRAMA Library

The DRAMA Library is designed to be called by parald message-passng (MPI) finite element
(in general, mesh-based) applications; the library itself is written in C and C++ and exploits MPI,
it may be called by applications written in both Fortran and C. The “expedation” of such
applications is for the rapid provision of information about: a re-partitioning o the mesh which
balances the costs occurring in the application; the interaction between processes required to
achieve the re-partitioning. Given the normal complexity and application dependence of such
algorithms, the actual data migration would nd be epected d the library. Thus, the DRAMA
library and its re-partitioning algorithms must be dficient, parallel (operating on distributed data)
and must also take the current partition into account, in arder to avoid high communication costs
during the resulting data migration. Furthermore, it should be based on actual occurring costs,
rather than some abstract heuristic. The current library design and re-partitioning modules
included has taken these requirements into account by the careful definition of the cost model and
library interface. A summary of this grategy would be: “The DRAMA Library is designed to
balancein parallel the actual costs occurring on the application's finite element mesh”.
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2.2.1 DRAMA Cost model and Library Interface

The interface between the application code and the library is designed around the DRAMA cost
model (which results in an dbjedive cost function for the load balancing re-partitioning
algorithms) and the instrumentation d the application code to spedfy current and future
computational and communication costs. The DRAMA cost model provides a measure of the
quality of the current distribution and is used for the prediction of the dfed on the computation
of moving some parts of the mesh to ather sub-domains. Calculation and communication speals
of the proces=rs are taken into account by a combination of hardware specific parameters and
costs which are based on time measurements and enumeration provided by application code
instrumentation. Heterogeneous machine architedures can also be taken into account in this way.
The essential featureis that the cost model is mesh-based, so that it is able to take account of the
various workload contributions and communication dependencies that can occur in finite dement
applications. Being mesh-based, the DRAMA cost model includes both per e ement and per node
computational costs and eement-element, node-node, and element-node data dependencies (for
communication).

In addition to data dependencies between neighbouring dements and nodes in the mesh,
dependencies between arbitrary parts of the mesh can accur. For the PAM-CRASH code, such
data dependencies originate within the contact-impact algorithms when the penetration of mesh
segments by non-conneded nodes is deteded and corrected. The DRAMA cost model (and d
course the library interface) allows the construction o “virtual elements’ which represent the
occurring costs of such dependencies.

Referring to [20,21] for further details, we will repeat some of the definitions used in the
DRAMA Cost Mode herefor ease of description in subsequent sedions. All occurring costs may
be asdgned a ‘type’, which allows the application to dstinguish costs arising for different
algorithmic comporents. An example is given, for nodal computation costs in Section 3.1.1.

Computational ‘phases’ are computational sections separated by synchronisation paoints, for
example, global communications geps arising due to the need to calculate global quantities (some

reduction gperation). Denating the sum of all occurring costs on a processor, i, for phase, j, by Fij,
then the total costs over the total number of phases (denoted by ‘ nphases'), F, is given by

F= zma)ﬁ:o...p—l(Fij)-

j=1...nphases
1)
Theload imbalance )\j, given by
N ~0.p-1(F)
averageo._p-1(F')
2

The current library design includes several types of mesh repartitioners that may be seleded by
the application: mesh-migration ([7,22]), graph partitioning & geometric (co-ordinate-based,
[1,11]) partitioning. A discusson d the various approaches and d the motivation for their choice
for the DRAMA library are given in [14]; Section 2.2.2 bdow will give further information on
the graph partitioning options, since these will be the subjea of the cost function minimisation
studies reported on in Section 3. The library builds upon the partitioning options with modules to
provide the interface to the full DRAMA input mesh and the cost monitoring parameters and to
deliver the full DRAMA output mesh and dd ~ new mesh relationships. The latter information
is provided in a format that will alow the application code to drectly build the appropriate

5/17



Subnmitted to Par allel Computing, Special Issue on “Graph Partitioning and Paralld Computing”

communication constructs (mailing lists) in arder to perform the associated data migration
corresponding to the re-partitioning.

2.2.2 Graph Partitioning within the DRAMA Library

‘Clasdcal’ graph partitioning methods employing weighted graphs derived from either element or
nodal mesh conrections would be unable to fully acoount for the costs arising in a finite element
application in general. The mesh-to-graph module of the DRAMA library constructs an
appropriate weighted graph from the distributed mesh. Depending on the properties and the needs
of the application, the resulting graph can be an 'dement graph’, a 'node graph', or a combined
‘dement-node graph'. Thelatter contains all possible relevant cost cortributions for finite el ement
codes. For a given partition, edges between nodks, dements or dements and nodes represent
different communication requirements between processors. For instance, edges between el ements
and rodes lead to communication when a sub-domain possesses an e ement but nat all its nodes.
The combination d the mesh-to-graph module with a suitable graph partitioner results in a mesh
partitioner based on the DRAMA cost model.

Within the current version o the DRAMA library, the subsequent graph partitioning is carried
out by calling routines from PARMETIS, the software package developed by Karypis et al.,
University of Minneapdis ([18,23]). PARMETIS contains several strategies for graph re
partitioning; in particular a multilevel method based on 'diffusing' load to adjacent partitions. The
idea behind this multilevel technique is that from the originally graph a hierarchy of coarser
graphs is generated (by merging gaph vertices to 'supervertices). A careful re-partitioning of the
coarsest graph is computed, and then this new partitioning is siccessvely 'projeded’ onto the next
finer graph and improved (again via load diffusion). In addition to this graph partitioning module
the co-operation with the University of Greenwich has developed a DRAMA interface to a
modified version d the JOSTLE mesh partitioning software ([25]) which extends the range of
particular options which will be investigated and validated.

3 Cost Capture and Minimisation, Perfor mance Results
In the discusson of the DRAMA library above, emphasis was placed on the development of a
cost model, and correspondng library interface, which represented the actual application costs
occurring on the (finite dement) mesh. Questions raised by this are: Can the appli cation represent
its costs using the cost model ? Can the cost model be optimised by the combination of mesh-to-
graph module and graph partitioner ? Can that optimisation be performed in an acoeptable time
for realistic meshes ? What is the benefit for the application ?
At the time of writing, nat all questions can be answered completely:
The very first question is dependent on the code’ s communication structures andis in part

the subjed of current developments to introduce multi-phase/-objedive partitioning. Sedion 3.1
will discussthe instrumentation o the PAM-CRASH and Forge3 codes and will show that even
the dynamically changing computation costs of contact-impact algorithms in PAM-CRASH can
be succesqully “captured”. The need for the multi-phase partitioning approach will be
demonstrated using the latter appli cation.

The final question on performance can only be fully answered when final benchmarking
has been completed, but very promising first results ar e available, as will be seen in Section 3.3.
The main focus of that section, however, will be to demonstrate that the DRAMA cost function
may indeal be dfectively handed using the mesh-to-graph plus graph partitioner approach and
that the parallel re-partitioning may be handled in acceptable time scales.
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3.1 Cost Capture

Avoiding detail s of the full set of parameters which may be provided to define the cost model in
general ([13,21]), the crucial parameters to be provided are numbers of operations (for nodes,
eements) for various types of occurring computations and rumbers of bytes to be communicated
across particular data dependencies (dement-node, etc.). The important point is that actual
timings can be used — from code instrumentation — to provide the computational times and code
monitoring (counting) may be included to gather the appropriate communication volumes. Since
communication latency is, from an instrumentation point of view, equivalent to load imbalance,
time measurements are not used for communication costs.

Before turning to an example from PAM-CRASH, where code instrumentation is essential to
correctly model the dynamically changing computation and communication structures related to
contact-impact calculations, it should be noted that in some @ses detailed instrumentation is not
necessry:

For the Forge3 code, the main computational cost of the iterative solver is in the matrix
vedor product, which is performed at each iteration. It is done independently on each subdamain
andthe global vedor is built by adding the contributions obtained on the different processors. The
floating operations reside in the computation of matrix-vedor products whil e the communications
take place during the addition. The performance of the solver depends only on the number of
iterations (and thus the number of matrix vector products) which varies as O(N*?) (however, this
can vary with the precondtioner), N being the number of mesh nodes. The matrix vector product
remains a short step in itsdlf, the cost being in the great number of matrix vedor products to be
dore. From the above, and the excellent agreement between predicted and actual costs, it can be
see that an ‘instrumentation’ of the code based on numbers of mesh nodes is perfectly sufficient
to provide the information to the DRAMA library interface and means that the introduction d
wall-clock timers around the computations is unnecessary.

To illustrate the possibilities with code instrumentation, we take an example from the
instrumentation o the PAM-CRASH code. The numbers of operations per node of type ‘type,

nopn(type), are set adaptively after every 1000time-steps (a “monitoring interval”) from timings
over the monitoring interval, Atcalc’n(type), based on the individual routine and code section
timings within each time-step (usingMPI_WTIME):

nop'(type) = At™"(type) / N"(type),
where N n(type) is the number of occuring nodes of that type. For instance, the noce type may be
a particular sub-set of nodes involved in a particular contact-calculation, where the sub-set may
be defined over the monitoring interval. The monitoring interval would be chosen to fit to the

expeded frequency of DRAMA library calls (which, it should be pointed aut, may be used
simply to check onload balance and may na necessarily result in are-partitioning calculation).

Of course, a certain level of averaging is thus introduced, but the application is able to choose a
monitoring interval that is appropriate for the expected computational variation. By the use of
virtual eements, dynamic dependencies and computational costs may be defined (and
instrumented in the same way as datic costs) and passed to the DRAMA library. We will see
below, that the combination of actual costs can be modell ed by the DRAMA cost model, with the
restriction that the total costs dould be the sum of costs for particular eement and node
computations plus the pure communications costs — a condition which is nat satisfied when
multiple synchronisation points occur within the application.

The PAM-CRASH code includes s/nchronising communications which mean that stress
strain calculations and contact-impact calculations are separated, i.e. the solution algorithm has
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two distinct phases. The current cost model and previously available partitioning algorithms
within the DRAMA library cannot take account of the two separated computational phases. Thus,
trying to balance all occurring costs via asingle DRAMA call, which implicitly assumes one
phase without synchronisation points, may result in subsequent exeaution times which are either
minimally improved a even worse (dependent on the relative imbalances and computational
weights of the two phases). Thisis demonstrated in Figure 1 where time-histories of the DRAMA
cost function per processor are displayed for each o the 16 processors before and after the
calculation of a new partition with the DRAMA library. The cost function for this example
included the stressstrain calculations and all dynamic costs from the contact-impact algorithms,
but some global costs were omitted in arder to highlight the dynamic behaviour. The DRAMA
cost function was evaluated after every 1000time-steps. Figure 1 also includes the correspondng
total elapsed time for the code, Ttot, for the same monitoring interval, measured by calls to
MPI_WTIME around the full time-step. The same global costs, which were omitted from the cost
function, were subtracted from Ttot in arder to enable a direct comparison with the cost function.
Otherwise all remaining computation, idle and communications times are included. The Ttot
times are of course independent of the procesgprocessor number.

The restriction d the cost modelling to a single computational phase is the reason for the
larger discrepancy between the total code elapsed time and the highest total cost model time after
the DRAMA repartitioning, since increased idle times are introduced into the first phase, by
moving elements from partitions with higher loads in the second (contact-impact phase). As a
result, the code elapsed times after the DRAMA repartitioning partition are actually in excess of
before it. Howeve, it can ke seen that the DRAMA library has succealed in minimising the mst
function: the spread o cost function histories after repartitioning is reduced by about a factor of
two. The “migration” of eements away from the contact-impact-dominated processors is clearly
visible when comparing the partitions in Figure 2. These results ow that the basis for accurate
cost capture is available. The approach to be followed within the DRAMA projed is to use
separate the costs into phases and to employ partitioners which can take account of this
separation. First results will be presented in Sedion 3.2.3.
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Figure 1. Comparison of the total costs included in the DRAMA cost function for the 2 different
exeautions (initial, top, and DRAMA-produced, battom) together with thetotal code dapsed time (Ttot) for
the same intervals. Ttot isthe upper line in bath cases. All costs are normalised to seconds per time-step.
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Figure 2.: Theinitial mesh showing theinitial partition (top) and DRAMA repartition (battom).
(Courtesy of BMW AG)
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3.2 Cost Minimisation via Graph Partitioning

3.2.1 Single-phase Partitioning for FORGE3

For a typical simulation with FORGES3, the finite element mesh consists only of tetrahedral
dements; i.e. al elements are of the same type. For the following tests we have used a mesh
consisting o 231846tetrahedral eements and 49666 nodes, partitioned into 4 subdamains, that
has been re-meshed such that the current partitioning is heavily unbalanced: about half of the
mesh resides on one processor.

ParMETIS has been called with the global diffusion gption and with various values for the
allowed load imbalance (1%, 2%, and 5% imbalance), PJOSTLE was used with both the local
and dobal options. Both were used with element and node graph representations. The dual graph
is constructed by taking into account only the element based calculation costs (negleding the
node based calculation costs). In a second step the nodes are partitioned based on the element
partitioning. The nodal graph is constructed by taking into account only the node based
calculation costs (neglecting the element based calculation costs). The elements get a partitioning
based on the partitioning o the nodes. The re-partitioning results are reported in Table 1.

Before and after re-partitioning, we have computed the predicted exeaution time for one iteration
of the implicit solver by evaluating the cost function, F (Section 2.2.1, equation (1)). Note that
both the dement-based and the node-based calculation costs are taken into account when

evaluating the cost function. Also presented are mini=q_. p-1F, the averagei-o.. p-1F and the load

imbalance A (here, the superscript for phase number has been dropped). Also presented are the
number of elements and nodes moved and the re-partitioning time on the NEC Cenju-4 (using 4
procesors). The re-partitioning time is the time nealed by the DRAMA library. The relative
exeadution time of ParMETIS is for the nodal graph and the dual graph about 25% and 40%,
respectively.

The results in Table 1 show that excellent re-partitioning is obtained for both the nodal and the
dual graph, despite the fact that the node-based calculation costs and the communication latency
are negleded in the dual graph representation. The nodal graph representation clearly leads to a
goad solution in much lesstime and with less memory usage. For the Forge3 code, there is no
real advantage in using a combined graph and certainly not one that would justify the even higher
memory requirements.

Further, the re-partitioning time (approx. 4.3s) is reasonable compared to the time between two
calls to the DRAMA library. Indeed, one integration time step (approx. 2000 iterations of the
implicit solver) requires about 56 seconds and re-partitioning is typically dore every 10 to 20
time steps. If one then looks at the predicted gains by using the DRAMA library (taking the
nodal graph and re-partitioning every 20 time-steps) we see

Original code: time=20x 2000 x 4.886x10° = 1954.40 secs,
With ParMETIS: time= 20 x 200D x 2.821x102 + 4.34 = 1132.74 SECS,
With PJOSTLE: time = 20 x 2000 x 2.693x102 + 6.18 = 1083.38 secs.

Thus, as demonstrated by the actual Forge3 results below, the prediction o the modelling is for
significant gains when using the DRAMA library. What has otherwise been clearly demonstrated
is that the DRAMA Cost Model can be effedively minimised by the graph partitioning modul es.
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Table 1: Results for various graph representations with a FORGE3 mesh consisting o 231846tetrahedral
dements and 49666 nodes and divided in 4 subdomains. Theinitia mesh dgtribution is heavily unbalanced
(about half of the mesh resides on one processor).

ParMETIS has been cdl ed with 1%, 2%, and 5% imbalance PJOSTLE with local and global options.

Dual graph
ParMETIS RIOSTLE
Initial 1% 2% 5% Local global

Fo=max F; |4.88x10° | 2.861x10° 2.821x10° 2.822x107 |2.79%6x10° 2.790x107

min F; 1.382x10% | 2.740x10% 2.69%x10% 2.671x107 | 2.555%x10% 2.526x107
averageF; | 2.686x10° | 2.79%x10° 2.748x10° 2.737x10° | 2.689x10° 2.657x107
Imbalance A | 81.92% 2.33% 2.64% 3.12% 3.97% 4.9%%
Elements moved 60037 56725 52331 118573 10189
Nodes moved 11961 11276 10397 24913 21515
Re-partitioning 10.92 1076 1074 1690 1699
time (secs)

Memory used 40 MB required for largest domain

Nodal graph
ParMETIS RIOSTLE
Initial 1% 2% 5% Local global

Fo=max i |4.886x10° | 2.836x10° 2.821x10° 2.877x10° | 2.69%6x10° 2.693x10°

min F; 1.382x10% | 2.728x10° 2.706x10% 2.634x10° | 2.682x10° 2.676x102
averageF; | 2.686x10%| 2.792x10° 2.757x10° 2.755x107 | 2.690x10° 2.684x10°
Imbalance A | 81.92% 1.57% 2.32% 4.48% 0.25% 0.31%
Elements moved 57335 56869 54910 98553 99052
Nodes moved 11236 11157 10717 20874 20981
Re-partiti oning 4,32 434 434 6.35 618
time (secs)

Memory used 25MB required for largest domain

3.2.2 DRAMA Library Costs for PAM-CRASH

DRAMA library costs for Forge3 meshes were given in Table 1, for partitioning with both nodal
and element graphs. Since the natural option for the PAM-CRASH code is the use the combined
graph, and because the PAM-CRASH meshes have a very different structure, especially since
virtual dements are employed for the contact-impact cost capture (with non-local
communications links), additional performance tests with the DRAMA library are reported here.
As in Sedion 3.2.1, single-phase partitioning is used. Tests were performed with a BMW
benchmark model (c.f. Figure 2) on the NEC Cenju-4 such that the mesh after 1000 time-steps
was first input to the DRAMA cost function (i.e. library routine DRAMA_COSTFUN - see[13)])
and then to the DRAMA Library to calculate a new partition. The re-partitioning calculation was
peformed using the  partitioning qgotions: ParMETIS-2.0  local diffusion
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(ParMETIS_RepartLDiffusion) with load-imbalance threshold value 1.05. In practice, the
expedationisfor afull DRAMA Library call (calculating a new partition) to be performed with a
frequency closer to every 10000 cycles. In fact, the subsequent time-steps will have a higher
computational cost, as the contact-impact calculations become more expensive.

Based on the results of Table 2, a full DRAMA library call is expeded to give an
overhead of approx. 2% dapsed time, when called after every 10000cycles and when using 63
compute P.E.s. The overhead is naturally small er for fewer processors. The degradation in scaling
of the DRAMA cost function is due to the use of coll ective operations within the cost function.
The time-histories displayed in Figure 1 show a behaviour which is snooth enough to suggest
that no real benefit would be obtained from cost function sampling at less than 1000 cycle
intervals. Thus, the cost function overheads are, for al but the largest process numbers,
insignificant.

Table 2: Exeadtion times for DRAMA Cost function and DRAMA Library calls on the NEC Cenju-4
together with thetotal solution times for the first 1000 cycles. PAM-CRASH, BMW benchmark modd.

Number of Execution times in seconds
node processes DRAMA Cost DRAMA Library PAM-CRASH for
Function 1000 time-steps
(including DRAMA costs)
2 0.0256 6.28 753.5
4 0.0526 6.84 397.8
8 0.0421 9.66 2135
16 0.0613 11.7 127.2
32 0.132 13.1 814
48 1.17 13.9 71.7
63 0.713 14.2 63.6

3.2.3 Multi-phase Partitioning for a PAM-CRASH Model

In this ®dion we report on preliminary results with partitioning for the multiple-phase costs
arising in PAM-CRASH (as discussed in Section 3.1). Experiments have been made to compare
single-phase partitioning with the new multi-constraint option ([16,17]) in (sequential) METIS
version 4.0 and a new multi-phase partitioning introduced in JOSTLE. The simplified benchmark
case taken is a box-beam, comprising anly 4-node shell dements, with the contact area limited to
its lower part. In arder to more clearly demonstrate the effeds under consideration, the contact-
impact phase costs, which occur only on dynamically changing sub-meshes, were scaled to be
around three times larger than the shell element (stressstrain calculation) costs that occur over
the full model. The contact pairs are modelled by 5-node virtual elements corresponding to a
penetrating node and a surface segment made of 4 nodes. Repartioning was triggered after 10000
cycles and the resulting partitions from different balancing schemes are shown in Figure 3 and
detail ed in Table 3. Load balance quantities given in Table 3 are defined as foll ows:

A1 for shell calculations (phase 1), A, for contact calculation (phase 2), A1 for the total load

balance assuming no synchronisation between phases and Ay, for the total load balance
considering synchronisation between phases.

13/17




Submitted to Par allel Computing, Special Isaue on “ Graph Partitioning and Paralled Computing”

Figure 3:Different partitionsinto four subdomains: initial partition (top, left), PaArMETIS globel diffusion
(top, middle), ParMETI S static k-way (top, right), METIS multi-congtraint (bottom, left), PJOSTLE
diffusion (battom, middie) and JOSTLE multi-phase (battom, right)

Table 3: Distribution of shell elements and contact pairs (CPs) per subdomain for different partitioning
methods together with the the load imbalance factors.

Initial ParMETIS METIS RIOSTLE JOSTLE
Diffusion Static (k-way) Multi_— Diffusion Multi-phase
constraint
shel | CPs el CPs el CPs el CPs el CPs el CPs
PEO | 512 | 118 306 100| 415 61 512 3( 330 9 515 30
PE1 | 512 0 553 118 599 0 517 30 516 21 515 2P
PE2 | 512 0 594 0 445 57 5172 28 601 0 50)7 30
PE3 | 512 0 595 0 589 0 512 30 601 0 511 29
Ay, Az | 100|400 1.162| 3.390| 1.170| 3.085| 1.000| 1.017| 1.174 | 3085 | 1006 | 1017
Aton1 1.442 1011 1026 1002 1004 1007
Aton2 1.442 1307 1302 1002 1455 1007
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Corsidering the results of Table 3, it is clear that only multi-constraint and multi-phase
partitioning (with values of Ay,2 close to one) could succeed in improving the performance of
the application although the other partitioning schemes minimised the aggregate cost function in
each case (as can be seen from the values of Ay,1). The aggregate cost function, however, does
not consider the presence of two synchronisation points and thus negleds idle times that are high
in the single-phase approach.

3.3 FORGES3 Performance

The following full code measurements have been performed on a four processor DEC SMP
machine. Two benchmark cases have been used. The DRAMA library plus data migration costs
for the two models for the completed simulations are also given below. Note that the DRAMA
library times are much smaller than those presented in Section 3.2: in addition to the use of a very
large mesh there, a much larger load-imbalance was present in the input mesh. For the results
with remeshing in sections 3.3.1 and 3.3.2, the initial imbalance is around 10%.

3.3.1 Forging of a Connecting Rod

Theforging d a connecting rod has been completely simulated. Depending on the number of
remeshings performed, the total number of dementsis approximately 1600Q The use of
DRAMA improved the overall job times distinctly: the example took 77 minutes with DRAMA,
whereas 97 minutes were neaded with the original algorithm. The reduced CPU timeis dueto
faster remeshing and to the fact that we use the node partition provided by DRAMA to increase
the solver accuracy.

Times for both the DRAMA library re-partitioning and subsequent data migration were both
below one second for each o the 39 remeshing steps. Thus, the total dynamic load balancing
overhead is beow 2% for this case.

3.3.2 Forging of a Brass Tap

The second benchmark is the simulation o the forging o a brass tap. The mesh size is
approximately 120000 dements. The following results refer to the first 50 time steps of the
simulation. For this partial simulation, the DRAMA version required 151 minutes as opposed to
the 205 minutes needed with the original code. Five remeshing steps were performed.

In this case, each DRAMA library call required 4 seconds and the data migration is again below
one second per remeshing step. Thus thetotal dynamic load balancing overhead is below 0.5%.

4 Concluding Remarks

With the ultimate release of the DRAMA library into the pudic domain, the aim of the DRAMA
project is to enable a widespread exploitation o the library as atool to allow efficient use of HPC
platforms. By defining an interface for general mesh applications, with a choice of (state-of-the-
art) re-partitioning components, a large section d the scientific computing community will be
able to achieve scalable performance with their complex applications. The scope of the library
exploitation is mesh-based appli cations that include dynamic and adaptive meshing a re-meshing
and/or dynamically changing computational loads on aherwise static meshes. Though the projed
includes evaluation using industrial finite element codes, the mesh interface definition is also
direaly applicable to finite volume codes.
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It has been shown that the conversion routines from the general mesh interface to an appropriate
graph representation allow graph partitioners to minimise the (mesh-oriented) DRAMA Cost
function. First results have shown that the overhead o the parallel execution o the library
partitionersis low enough to allow major gains to be achieved within the application code. Future
project activities wil | include rigorous evaluation and benchmarking for industrial problems.

That nat all re-partitioning problems can be solved with a single-phase re-partitioning has been
demonstrated with the PAM-CRASH code, where multiple computational phases occur. The
current research developments into multi-constraint or multi-phase partitioners are also being
investigated within the DRAMA framework and the first results presented here are most
encouraging. The future focus will be to ensure that the improvements offered by these
partitioners can be redlised in paralld implementations.
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