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Abstract: The DRAMA project is a European Commission (ESPRIT)-funded project which has
been initiated to support the take-up of large scale parallel simulation in industry by dealing with
one of the main problems which restricts the use of message-passing simulation codes - the
inability to perform dynamic load balancing. A concentration on message-passing parallelisation
corresponds to the target of addressing large scale and thus highly scalable parallel applications.
The central product of the project will be a library comprising various tools for dynamic re-
partitioning of unstructured finite element applications. The particular focus of the project is on
the requirements of industrial Finite Element codes, with library evaluation and validation being
performed using industrial software packages, but codes using Finite Volume formulations wil l
also be able to make use of the project results. The core library functions will perform a parallel
computation of a mesh re-allocation that wil l re-balance the costs of the application code based
on the DRAMA cost model. This paper wil l discuss the design features of the library, which
allow a general approach to load identification, modelling and minimisation. Results wil l be
presented which both justify the inclusion of single-phase/uni-constraint graph partition
components and point ahead to the requirements for multi -phase/multi-constraint versions.
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1 Introduction
The effectiveness of parallel computing has been clearly demonstrated for scientific applications
ranging from purely academic problems to simulation codes used within industrial design.
However, particularly in the latter area, the advancement beyond “exploratory installations”
requires fully efficient, fully scalable solutions to all problems of interest to the end-user and
involving all code functions. In many areas of simulation, a crucial component for efficient
numerical computations is the use of solution-driven adaptive features: locally-adapted meshing
or re-meshing; dynamically changing computational tasks. The full advantages of HPC
technology will thus only be able to be exploited when efficient parallel adaptive solvers can be
realised. As discussed in [11], the resulting requirement for HPC software is for dynamic load
balancing, which for many mesh-based applications means dynamic mesh re-partitioning. The
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ESPRIT project DRAMA (project No. 24953, “Dynamic re-allocation of meshes for parallel
Finite Element applications") has been initiated to address this issue, with a particular focus being
the requirements of industrial Finite Element codes, but codes using Finite Volume formulations
will also be able to make use of the project results.

Given the importance of the theme and the generality of the requirement for dynamic load
balancing of HPC applications, it is clear that the DRAMA objectives wil l be shared with other
international developments. The following brief discussion highlights the differences between
DRAMA and other activities and positions the project’s approach w.r.t. those activities.

Two major aspects distinguish DRAMA from alternative approaches: the development of a
general purpose library; the evaluation and validation with leading commercial software for
industrial simulation. The latter feature, in addition to ensuring the industrial relevance of the
approach, includes state-of-the-art 3-D parallel adaptive meshing technology in development at
the DRAMA project partner, CEMEF. The library approach is a most important distinction and a
strength of the project, since it should ensure a widespread take-up of the project results,
especially since the final DRAMA library will be put into the public domain. A general-purpose
approach is also indicated as a future direction, though as an object-oriented tool rather than a
standard library, in [11]. The alternative to the library approach is of course to develop load
balancing & mesh re-allocation options within a particular application and many groups are, and
have been, investigating such an approach.

As wil l be discussed in more detail below, the DRAMA library performs re-partitioning
of the mesh (based on all costs arising on that mesh), and supports the data re-allocation with old-
new mesh numbering information. The partitioning of the mesh is maintained even when using
(appropriately interfaced and/or modified) graph partitioners inside the library, due to the mesh-
to-graph (and inverse mapping) components. Thus the project is addressing weaknesses in graph
partitioning methods which are under discussion within state-of-the-art forums (see, for example,
[10]). It will be seen in Section 3 that the graph partitioning component is indeed able to minimise
mesh-based costs. Within the DRAMA library, two state-of-the-art tools will be included:
ParMETIS as an integral part and JOSTLE via a compatible interface (a form of "plug-and-play"
option). Those two tools are widely accepted and have a significant number of users (though
mainly for static partitioning).

A development that is to a certain extent complementary to the approach taken by DRAMA is the
PLUM environment ([4]). The PLUM environment for dynamically balancing a hierarchically
refined mesh focuses on minimising the costs of data repartitioning via a heuristic remapping
algorithm. It represents the mesh by a fixed dual graph (with variable weights to represent
refinement levels) of the coarsest mesh. A more general research environment, UG ([2]), allows
applications to build on parallel, multilevel components for unstructured meshes and includes
dynamic load balancing via the DDD tool ([3]). UG's primary aim is to be a tool for the
exploration of new discretisation schemes, solvers and error estimators. Consequences of the
focus on research are that Fortran interfacing has not yet been considered and absolute
performance (in terms of data structures allowing high optimisation across all HPC platforms) has
not been a driving issue.

By performing dynamic mesh re-allocation within the application, the DRAMA approach is to
increase the efficiency of that application and thus of its exploitation of the HPC system being
used. The focus on important simulation codes for industrial design is at the same time a focus on
applications for which the turn around time of individual jobs plays a critical role. Many projects
and developments have taken an alternative route to dynamic load balancing, which is not
directly comparable with the DRAMA developments: Via interaction with the operating system
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they target the optimal use of the system resources rather than the scalabil ity of individual
important applications.

Following an overview of the DRAMA project, and in particular of the applications whose
requirements are helping to drive the library design, we will discuss how well a general library
and cost model is able to be used to capture the occurring costs and introduce new developments
which wil l be investigated to address the major shortcoming for some applications: separated
computational sections, for example due to multiple synchronisation points, which require a
“multi-phase” or “multi-objective” minimisation approach. Results will be presented which
illustrate that the graph partitioning components are able, through the mesh ↔ graph
transformations, to minimise the DRAMA cost function. In addition to performance results for
parallel li brary execution on representative application meshes, it wil l be seen that initial results
with the full Forge3 code show total application gains when using the DRAMA library.

2 The DRAMA Project
In the following, a brief introduction to the activities of the DRAMA project wil l be given. The
reader is referred to the project web-site [12] for further information about the project and its
partners, and in particular to the (public) project deliverables made available there. As stated
above, the central product of the project will be the DRAMA Library. The library interface, and
underlying cost model, have been designed such that all information can be provided by the
application based on its actual local data and measured costs (via code instrumentation). This
aspect will be addressed for two of the “DRAMA applications” in Section 3. An overview of
these applications, whose role in the project is to evaluate and validate the DRAMA library, wil l
be given in Section 2.1. Section 2.2. summarises the design decisions taken in the construction of
the library. Detailed information concerning the DRAMA Cost model and library interface are
given in [13,14,20,21].

2.1 The DRAMA Project Applications
The mesh re-allocation approach to dynamic load balancing wil l be demonstrated and validated
by the leading industrial codes PAM-CRASH (for crashworthiness simulation), PAM-STAMP
(for metal stamping / deep-drawing and related simulations), FORGE-3 (for forging with
viscoplastic incompressible materials). Despite this emphasis on the validation codes within the
project, the library has been designed to be general purpose. All the DRAMA applications use
time-marching as basic solution procedure and both explicit (PAM-CRASH/-STAMP) and
implicit (FORGE3) methods are included. Causes of load-imbalance, and resulting degradation of
scalability, are: (a) a dynamic behaviour of computational cost per element and of the
communication patterns; (b) meshes which are changing during the calculation - adaptive
meshing or re-meshing, including reshaping, refinement and coarsening. The self-impacting
contact-impact algorithms used in PAM-CRASH are extreme cases of the former. Adaptive
meshing is essential for codes li ke FORGE3 or PAM-STAMP where the large deformations
would otherwise result in extremely severe distortions of the mesh elements.

2.1.1 FORGE-3 & Parallel Adaptive Remeshing
FORGE3 from Transvalor is an implicit finite element code designed for the simulation of three-
dimensional metal forming. It is able to simulate the large deformations of viscoplastic
incompressible materials with unilateral contact conditions. The code is based on a stable mixed
velocity/pressure formulation using tetrahedral unstructured meshes and employs an implicit time
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stepping technique. Central to the Newton iteration dealing with the non-linearity arising from the
behaviour of material and the unilateral contact condition is an iterative procedure based on a
conjugate residual method for the solution of the large linear system.
The parallelisation of the full code, including adaptive re-meshing, was done within the
EUROPORT project ([24]) employing a mesh partitioning approach. For forging simulations, the
capabili ty for re-meshing is a unique, competitive advantage of the FORGE3 code. A functioning
3-D parallel re-meshing procedure has been established which requires a repartitioning stage
('element migration'), not only to avoid load imbalance but also to deal with the interface re-
meshing. This has to date been achieved via a centralised re-allocation process, which becomes a
bottleneck, especially for large problems or when a large number of processors is used.
The reader is referred to [5,8,9] and the references therein for further information.

2.1.2 PAM-CRASH & PAM-STAMP
The PAM-CRASH and PAM-STAMP codes are two of the ESI/PSI Group products that are buil t
around the PAM-SOLID core solver libraries. The most crucial components within the
crashworthiness code PAM-CRASH are the contact-impact algorithms whose main feature, from
the DRAMA viewpoint, is the dynamically changing computation and communications costs.
Contact-impact algorithms are also crucial to the simulations performed by PAM-STAMP, but
the much more significant parallelisation requirement is the efficient handling of adaptive
meshing since around 90% of stamping applications rely on the adaptive meshing features. In
contrast to the re-meshing approach adopted by FORGE3, PAM-STAMP uses a mesh-refinement
(and coarsening) strategy based on the original user-defined mesh. The current message-passing
versions have been further developed from the prototypes produced within the EUROPORT
([24]) and EUROPORT-D ([15]) projects.
Leaving details of the algorithms and their parallelisation to [6,19] and the references therein, a
summary of the solution methods of the PAM-SOLID-based codes is as follows: an explicit time-
integration; a non-linear finite element method using a Lagrangian unstructured mesh; element-
wise stress-strain calculations supplemented by penalty method contact-impact algorithms to
detect and correct penetration of structural components.

2.2 The DRAMA Library
The DRAMA Library is designed to be called by parallel message-passing (MPI) finite element
(in general, mesh-based) applications; the library itself is written in C and C++ and exploits MPI,
it may be called by applications written in both Fortran and C. The “expectation” of such
applications is for the rapid provision of information about: a re-partitioning of the mesh which
balances the costs occurring in the application; the interaction between processes required to
achieve the re-partitioning. Given the normal complexity and application dependence of such
algorithms, the actual data migration would not be expected of the library. Thus, the DRAMA
library and its re-partitioning algorithms must be efficient, parallel (operating on distributed data)
and must also take the current partition into account, in order to avoid high communication costs
during the resulting data migration. Furthermore, it should be based on actual occurring costs,
rather than some abstract heuristic. The current library design and re-partitioning modules
included has taken these requirements into account by the careful definition of the cost model and
library interface. A summary of this strategy would be: “The DRAMA Library is designed to
balance in parallel the actual costs occurring on the application's finite element mesh”.
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2.2.1 DRAMA Cost model and Library Interface
The interface between the application code and the library is designed around the DRAMA cost
model (which results in an objective cost function for the load balancing re-partitioning
algorithms) and the instrumentation of the application code to specify current and future
computational and communication costs. The DRAMA cost model provides a measure of the
quality of the current distribution and is used for the prediction of the effect on the computation
of moving some parts of the mesh to other sub-domains. Calculation and communication speeds
of the processors are taken into account by a combination of hardware specific parameters and
costs which are based on time measurements and enumeration provided by application code
instrumentation. Heterogeneous machine architectures can also be taken into account in this way.
The essential feature is that the cost model is mesh-based, so that it is able to take account of the
various workload contributions and communication dependencies that can occur in finite element
applications. Being mesh-based, the DRAMA cost model includes both per element and per node
computational costs and element-element, node-node, and element-node data dependencies (for
communication).
In addition to data dependencies between neighbouring elements and nodes in the mesh,
dependencies between arbitrary parts of the mesh can occur. For the PAM-CRASH code, such
data dependencies originate within the contact-impact algorithms when the penetration of mesh
segments by non-connected nodes is detected and corrected. The DRAMA cost model (and of
course the library interface) allows the construction of “virtual elements” which represent the
occurring costs of such dependencies.

Referring to [20,21] for further details, we will repeat some of the definitions used in the
DRAMA Cost Model here for ease of description in subsequent sections. All occurring costs may
be assigned a ‘ type’ , which allows the application to distinguish costs arising for different
algorithmic components. An example is given, for nodal computation costs in Section 3.1.1.
Computational ‘phases’ are computational sections separated by synchronisation points, for
example, global communications steps arising due to the need to calculate global quantities (some

reduction operation). Denoting the sum of all occurring costs on a processor, i, for phase, j, by Fi
j
,

then the total costs over the total number of phases (denoted by ‘nphases’ ), F, is given by

(1)

The load imbalance λj
, given by

(2)

The current library design includes several types of mesh repartitioners that may be selected by
the application: mesh-migration ([7,22]), graph partitioning & geometric (co-ordinate-based,
[1,11]) partitioning. A discussion of the various approaches and of the motivation for their choice
for the DRAMA library are given in [14]; Section 2.2.2 below will give further information on
the graph partitioning options, since these wil l be the subject of the cost function minimisation
studies reported on in Section 3. The library builds upon the partitioning options with modules to
provide the interface to the full DRAMA input mesh and the cost monitoring parameters and to
deliver the full DRAMA output mesh and old ↔ new mesh relationships. The latter information
is provided in a format that will allow the application code to directly build the appropriate
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communication constructs (mailing lists) in order to perform the associated data migration
corresponding to the re-partitioning.

2.2.2 Graph Partitioning within the DRAMA Library
‘Classical’ graph partitioning methods employing weighted graphs derived from either element or
nodal mesh connections would be unable to fully account for the costs arising in a finite element
application in general. The mesh-to-graph module of the DRAMA library constructs an
appropriate weighted graph from the distributed mesh. Depending on the properties and the needs
of the application, the resulting graph can be an 'element graph', a 'node graph', or a combined
'element-node graph'. The latter contains all possible relevant cost contributions for finite element
codes. For a given partition, edges between nodes, elements or elements and nodes represent
different communication requirements between processors. For instance, edges between elements
and nodes lead to communication when a sub-domain possesses an element but not all i ts nodes.
The combination of the mesh-to-graph module with a suitable graph partitioner results in a mesh
partitioner based on the DRAMA cost model.
Within the current version of the DRAMA library, the subsequent graph partitioning is carried
out by calling routines from PARMETIS, the software package developed by Karypis et al.,
University of Minneapolis ([18,23]). PARMETIS contains several strategies for graph re-
partitioning; in particular a multilevel method based on 'diffusing' load to adjacent partitions. The
idea behind this multilevel technique is that from the originally graph a hierarchy of coarser
graphs is generated (by merging graph vertices to 'supervertices'). A careful re-partitioning of the
coarsest graph is computed, and then this new partitioning is successively 'projected' onto the next
finer graph and improved (again via load diffusion). In addition to this graph partitioning module
the co-operation with the University of Greenwich has developed a DRAMA interface to a
modified version of the JOSTLE mesh partitioning software ([25]) which extends the range of
particular options which will be investigated and validated.

3 Cost Capture and Minimisation, Performance Results
In the discussion of the DRAMA library above, emphasis was placed on the development of a
cost model, and corresponding library interface, which represented the actual application costs
occurring on the (finite element) mesh. Questions raised by this are: Can the application represent
its costs using the cost model ? Can the cost model be optimised by the combination of mesh-to-
graph module and graph partitioner ? Can that optimisation be performed in an acceptable time
for realistic meshes ? What is the benefit for the application ?
At the time of writing, not all questions can be answered completely:

The very first question is dependent on the code’s communication structures and is in part
the subject of current developments to introduce multi-phase/-objective partitioning. Section 3.1
will discuss the instrumentation of the PAM-CRASH and Forge3 codes and wil l show that even
the dynamically changing computation costs of contact-impact algorithms in PAM-CRASH can
be successfully “captured”. The need for the multi-phase partitioning approach will be
demonstrated using the latter application.

The final question on performance can only be fully answered when final benchmarking
has been completed, but very promising first results are available, as will be seen in Section 3.3.
The main focus of that section, however, will be to demonstrate that the DRAMA cost function
may indeed be effectively handled using the mesh-to-graph plus graph partitioner approach and
that the parallel re-partitioning may be handled in acceptable time scales.
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3.1 Cost Capture
Avoiding details of the full set of parameters which may be provided to define the cost model in
general ([13,21]), the crucial parameters to be provided are numbers of operations (for nodes,
elements) for various types of occurring computations and numbers of bytes to be communicated
across particular data dependencies (element-node, etc.). The important point is that actual
timings can be used – from code instrumentation – to provide the computational times and code
monitoring (counting) may be included to gather the appropriate communication volumes. Since
communication latency is, from an instrumentation point of view, equivalent to load imbalance,
time measurements are not used for communication costs.

Before turning to an example from PAM-CRASH, where code instrumentation is essential to
correctly model the dynamically changing computation and communication structures related to
contact-impact calculations, it should be noted that in some cases detailed instrumentation is not
necessary:

For the Forge3 code, the main computational cost of the iterative solver is in the matrix
vector product, which is performed at each iteration. It is done independently on each subdomain
and the global vector is buil t by adding the contributions obtained on the different processors. The
floating operations reside in the computation of matrix-vector products while the communications
take place during the addition. The performance of the solver depends only on the number of
iterations (and thus the number of matrix vector products) which varies as O(N3/2) (however, this
can vary with the preconditioner), N being the number of mesh nodes. The matrix vector product
remains a short step in itself, the cost being in the great number of matrix vector products to be
done. From the above, and the excellent agreement between predicted and actual costs, it can be
seen that an ‘ instrumentation’ of the code based on numbers of mesh nodes is perfectly suff icient
to provide the information to the DRAMA library interface and means that the introduction of
wall-clock timers around the computations is unnecessary.

To illustrate the possibil ities with code instrumentation, we take an example from the
instrumentation of the PAM-CRASH code. The numbers of operations per node of type ‘ type’ ,

nopn
(type), are set adaptively after every 1000 time-steps (a “monitoring interval”) from timings

over the monitoring interval,  ∆tcalc,n
(type), based on the individual routine and code section

timings within each time-step (using MPI_WTIME):

nopn
(type) =  ∆tcalc,n

(type)  /  Νn
(type),

where Ν n
(type) is the number of occuring nodes of that type. For instance, the node type may be

a particular sub-set of nodes involved in a particular contact-calculation, where the sub-set may
be defined over the monitoring interval. The monitoring interval would be chosen to fit to the
expected frequency of DRAMA library calls (which, it should be pointed out, may be used
simply to check on load balance and may not necessarily result in a re-partitioning calculation).

Of course, a certain level of averaging is thus introduced, but the application is able to choose a
monitoring interval that is appropriate for the expected computational variation. By the use of
virtual elements, dynamic dependencies and computational costs may be defined (and
instrumented in the same way as static costs) and passed to the DRAMA library. We will see
below, that the combination of actual costs can be modelled by the DRAMA cost model, with the
restriction that the total costs should be the sum of costs for particular element and node
computations plus the pure communications costs  – a condition which is not satisfied when
multiple synchronisation points occur within the application.

The PAM-CRASH code includes synchronising communications which mean that stress-
strain calculations and contact-impact calculations are separated, i.e. the solution algorithm has
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two distinct phases. The current cost model and previously available partitioning algorithms
within the DRAMA library cannot take account of the two separated computational phases. Thus,
trying to balance all occurring costs via a single DRAMA call , which implicitly assumes one
phase without synchronisation points, may result in subsequent execution times which are either
minimally improved or even worse (dependent on the relative imbalances and computational
weights of the two phases). This is demonstrated in Figure 1 where time-histories of the DRAMA
cost function per processor are displayed for each of the 16 processors before and after the
calculation of a new partition with the DRAMA library. The cost function for this example
included the stress-strain calculations and all dynamic costs from the contact-impact algorithms,
but some global costs were omitted in order to highlight the dynamic behaviour. The DRAMA
cost function was evaluated after every 1000 time-steps. Figure 1 also includes the corresponding
total elapsed time for the code, Ttot, for the same monitoring interval, measured by calls to
MPI_WTIME around the full time-step. The same global costs, which were omitted from the cost
function, were subtracted from Ttot in order to enable a direct comparison with the cost function.
Otherwise all remaining computation, idle and communications times are included. The Ttot
times are of course independent of the process/processor number.

The restriction of the cost modelling to a single computational phase is the reason for the
larger discrepancy between the total code elapsed time and the highest total cost model time after
the DRAMA repartitioning, since increased idle times are introduced into the first phase, by
moving elements from partitions with higher loads in the second (contact-impact phase). As a
result, the code elapsed times after the DRAMA repartitioning partition are actually in excess of
before it. However, it can be seen that the DRAMA library has succeeded in minimising the cost
function: the spread of cost function histories after repartitioning is reduced by about a factor of
two. The “migration” of elements away from the contact-impact-dominated processors is clearly
visible when comparing the partitions in Figure 2. These results show that the basis for accurate
cost capture is available. The approach to be followed within the DRAMA project is to use
separate the costs into phases and to employ partitioners which can take account of this
separation. First results will be presented in Section 3.2.3.
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Figure 1: Comparison of the total costs included in the DRAMA cost function for the 2 different
executions (initial, top, and DRAMA-produced, bottom) together with the total code elapsed time (Ttot) for
the same intervals. Ttot is the upper line in both cases. All costs are normalised to seconds per time-step.

Ttot

DRAMA
cost
function for
the 16
processes

Ttot

DRAMA
cost
function for
the 16
processes
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Figure 2.: The initial mesh showing the initial partition (top) and DRAMA repartition (bottom).
(Courtesy of BMW AG)
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3.2 Cost Minimisation via Graph Partitioning

3.2.1 Single-phase Partitioning for FORGE3
For a typical simulation with FORGE3, the finite element mesh consists only of tetrahedral
elements; i.e. all elements are of the same type. For the following tests we have used a mesh
consisting of 231846 tetrahedral elements and 49666 nodes, partitioned into 4 subdomains, that
has been re-meshed such that the current partitioning is heavily unbalanced: about half of the
mesh resides on one processor.

ParMETIS has been called with the global diffusion option and with various values for the
allowed load imbalance (1%, 2%, and 5% imbalance), PJOSTLE was used with both the local
and global options. Both were used with element and node graph representations. The dual graph
is constructed by taking into account only the element based calculation costs (neglecting the
node based calculation costs). In a second step the nodes are partitioned based on the element
partitioning. The nodal graph is constructed by taking into account only the node based
calculation costs (neglecting the element based calculation costs). The elements get a partitioning
based on the partitioning of the nodes. The re-partitioning results are reported in Table 1.
Before and after re-partitioning, we have computed the predicted execution time for one iteration
of the implicit solver by evaluating the cost function, F (Section 2.2.1, equation (1)). Note that
both the element-based and the node-based calculation costs are taken into account when

evaluating the cost function. Also presented are mini=0…p-1Fi, the averagei=0…p-1Fi and the load
imbalance λ (here, the superscript for phase number has been dropped). Also presented are the
number of elements and nodes moved and the re-partitioning time on the NEC Cenju-4 (using 4
processors). The re-partitioning time is the time needed by the DRAMA library. The relative
execution time of ParMETIS is for the nodal graph and the dual graph about 25% and 40%,
respectively.

The results in Table 1 show that excellent re-partitioning is obtained for both the nodal and the
dual graph, despite the fact that the node-based calculation costs and the communication latency
are neglected in the dual graph representation. The nodal graph representation clearly leads to a
good solution in much less time and with less memory usage. For the Forge3 code, there is no
real advantage in using a combined graph and certainly not one that would justify the even higher
memory requirements.

Further, the re-partitioning time (approx. 4.3s) is reasonable compared to the time between two
calls to the DRAMA library. Indeed, one integration time step (approx. 2000 iterations of the
implicit solver) requires about 56 seconds and re-partitioning is typically done every 10 to 20
time steps.  If one then looks at the predicted gains by using the DRAMA library (taking the
nodal graph and re-partitioning every 20 time-steps) we see:

Original code: time = 20 × 2000 × 4.886×10-2 =  1954.40 secs,
With ParMETIS: time = 20 × 2000 × 2.821×10-2  + 4.34 =  1132.74 secs,
With PJOSTLE: time = 20 × 2000 × 2.693×10-2  + 6.18 =  1083.38 secs.

Thus, as demonstrated by the actual Forge3 results below, the prediction of the modelli ng is for
significant gains when using the DRAMA library. What has otherwise been clearly demonstrated
is that the DRAMA Cost Model can be effectively minimised by the graph partitioning modules.
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Table 1: Results for various graph representations with a FORGE3 mesh consisting of 231846 tetrahedral
elements and 49666 nodes and divided in 4 subdomains. The initial mesh distribution is heavil y unbalanced
(about half of the mesh resides on one processor).
ParMETIS has been called with 1%, 2%, and 5% imbalance, PJOSTLE with local and global options.

Dual graph

ParMETIS PJOSTLE
Initial 1% 2% 5% Local global

Fc = max Fi 4.886×10-2 2.861×10-2 2.821×10-2 2.822×10-2 2.795×10-2 2.790×10-2

min Fi 1.382×10-2 2.740×10-2 2.695×10-2 2.671×10-2 2.555×10-2 2.526×10-2

average Fi 2.686×10-2 2.795×10-2 2.748×10-2 2.737×10-2 2.689×10-2 2.657×10-2

Imbalance, λ 81.92% 2.33% 2.64% 3.12% 3.97% 4.99%
Elements moved 60037 56725 52331 118573 101891

Nodes moved 11961 11276 10397 24913 21515
Re-partitioning

time (secs)
10.92 10.76 10.74 16.90 16.99

Memory used 40 MB required for largest domain

Nodal graph

ParMETIS PJOSTLE
Initial 1% 2% 5% Local global

Fc = max Fi 4.886×10-2 2.836×10-2 2.821×10-2 2.877×10-2 2.696×10-2 2.693×10-2

min Fi 1.382×10-2 2.728×10-2 2.706×10-2 2.634×10-2 2.682×10-2 2.676×10-2

average Fi 2.686×10-2 2.792×10-2 2.757×10-2 2.755×10-2 2.690×10-2 2.684×10-2

Imbalance, λ 81.92% 1.57% 2.32% 4.44% 0.25% 0.31%
Elements moved 57335 56869 54910 98553 99052

Nodes moved 11236 11157 10717 20874 20981
Re-partitioning

time (secs)
4.32 4.34 4.34 6.35 6.18

Memory used 25 MB required for largest domain

3.2.2 DRAMA Library Costs for PAM-CRASH
DRAMA library costs for Forge3 meshes were given in Table 1, for partitioning with both nodal
and element graphs. Since the natural option for the PAM-CRASH code is the use the combined
graph, and because the PAM-CRASH meshes have a very different structure, especially since
virtual elements are employed for the contact-impact cost capture (with non-local
communications links), additional performance tests with the DRAMA library are reported here.
As in Section 3.2.1, single-phase partitioning is used. Tests were performed with a BMW
benchmark model (c.f. Figure 2) on the NEC Cenju-4 such that the mesh after 1000 time-steps
was first input to the DRAMA cost function (i.e. library routine DRAMA_COSTFUN - see [13])
and then to the DRAMA Library to calculate a new partition. The re-partitioning calculation was
performed using the partitioning options: ParMETIS-2.0 local diffusion
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(ParMETIS_RepartLDiffusion) with load-imbalance threshold value 1.05. In practice, the
expectation is for a full DRAMA Library call (calculating a new partition) to be performed with a
frequency closer to every 10000 cycles. In fact, the subsequent time-steps will have a higher
computational cost, as the contact-impact calculations become more expensive.

Based on the results of Table 2, a full DRAMA library call i s expected to give an
overhead of approx. 2% elapsed time, when called after every 10000 cycles and when using 63
compute P.E.s. The overhead is naturally smaller for fewer processors. The degradation in scaling
of the DRAMA cost function is due to the use of collective operations within the cost function.
The time-histories displayed in Figure 1 show a behaviour which is smooth enough to suggest
that no real benefit would be obtained from cost function sampling at less than 1000 cycle
intervals. Thus, the cost function overheads are, for all but the largest process numbers,
insignificant.

Table 2: Execution times for DRAMA Cost function and DRAMA Library call s on the NEC Cenju-4
together with the total solution times for the first 1000 cycles. PAM-CRASH, BMW benchmark model.

Execution times in secondsNumber of
node processes DRAMA Cost

Function
DRAMA Library PAM-CRASH for

1000 time-steps
(including DRAMA costs)

2 0.0256 6.28 753.5
4 0.0526 6.84 397.8
8 0.0421 9.66 213.5
16 0.0613 11.7 127.2
32 0.132 13.1 81.4
48 1.17 13.9 71.7
63 0.713 14.2 63.6

3.2.3 Multi-phase Partitioning for a PAM-CRASH Model
In this section we report on preliminary results with partitioning for the multiple-phase costs
arising in PAM-CRASH (as discussed in Section 3.1). Experiments have been made to compare
single-phase partitioning with the new multi-constraint option ([16,17]) in (sequential) METIS
version 4.0 and a new multi-phase partitioning introduced in JOSTLE. The simplified benchmark
case taken is a box-beam, comprising only 4-node shell elements, with the contact area limited to
its lower part. In order to more clearly demonstrate the effects under consideration, the contact-
impact phase costs, which occur only on dynamically changing sub-meshes, were scaled to be
around three times larger than the shell element (stress-strain calculation) costs that occur over
the full model. The contact pairs are modelled by 5-node virtual elements corresponding to a
penetrating node and a surface segment made of 4 nodes. Repartioning was triggered after 10000
cycles and the resulting partitions from different balancing schemes are shown in Figure 3 and
detailed in Table 3. Load balance quantities given in Table 3 are defined as follows:
λ1 for shell calculations (phase 1), λ2 for contact calculation (phase 2), λtot,1 for the total load
balance assuming no synchronisation between phases and λtot,2 for the total load balance
considering synchronisation between phases.
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Figure 3:Different partitions into four subdomains: initial partition (top, left), ParMETIS global diffusion
(top, middle), ParMETIS static k-way (top, right), METIS multi-constraint (bottom, left), PJOSTLE
diffusion (bottom, middle) and JOSTLE multi-phase (bottom, right)

Table 3: Distribution of shell elements and contact pairs (CPs) per subdomain for different partitioning
methods together with the the load imbalance factors.

ParMETIS METIS PJOSTLE JOSTLEInitial

Diffusion Static (k-way) Multi-
constraint

Diffusion Multi-phase

shell CPs shell CPs shell CPs shell CPs shell CPs shell CPs

PE 0 512 118 306 100 415 61 512 30 330 91 515 30

PE 1 512 0 553 118 599 0 512 30 516 27 515 29

PE 2 512 0 594 0 445 57 512 28 601 0 507 30

PE 3 512 0 595 0 589 0 512 30 601 0 511 29

λ1, λ2 1.00 4.00 1.162 3.390 1.170 3.085 1.000 1.017 1.174 3.085 1.006 1.017

λtot,1 1.442 1.011 1.026 1.002 1.004 1.007

λtot,2 1.442 1.307 1.302 1.002 1.455 1.007
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Considering the results of Table 3, it is clear that only multi-constraint and multi-phase
partitioning (with values of λtot,2  close to one) could succeed in improving the performance of
the application although the other partitioning schemes minimised the aggregate cost function in
each case (as can be seen from the values of λtot,1). The aggregate cost function, however, does
not consider the presence of two synchronisation points and thus neglects idle times that are high
in the single-phase approach.

3.3 FORGE3 Performance
The following full code measurements have been performed on a four processor DEC SMP
machine. Two benchmark cases have been used. The DRAMA library plus data migration costs
for the two models for the completed simulations are also given below. Note that the DRAMA
library times are much smaller than those presented in Section 3.2: in addition to the use of a very
large mesh there, a much larger load-imbalance was present in the input mesh. For the results
with remeshing in sections 3.3.1 and 3.3.2, the initial imbalance is around 10%.

3.3.1 Forging of a Connecting Rod
The forging of a connecting rod has been completely simulated. Depending on the number of
remeshings performed, the total number of elements is approximately 16000. The use of
DRAMA improved the overall job times distinctly: the example took 77 minutes with DRAMA,
whereas 97 minutes were needed with the original algorithm. The reduced CPU time is due to
faster remeshing and to the fact that we use the node partition provided by DRAMA to increase
the solver accuracy.
Times for both the DRAMA library re-partitioning and subsequent data migration were both
below one second for each of the 39 remeshing steps. Thus, the total dynamic load balancing
overhead is below 2% for this case.

3.3.2 Forging of a Brass Tap
The second benchmark is the simulation of the forging of a brass tap. The mesh size is
approximately 120000 elements. The following results refer to the first 50 time steps of the
simulation. For this partial simulation, the DRAMA version required 151 minutes as opposed to
the 205 minutes needed with the original code. Five remeshing steps were performed.
In this case, each DRAMA library call required 4 seconds and the data migration is again below
one second per remeshing step. Thus the total dynamic load balancing overhead is below 0.5%.

4 Concluding Remarks
With the ultimate release of the DRAMA library into the public domain, the aim of the DRAMA
project is to enable a widespread exploitation of the library as a tool to allow efficient use of HPC
platforms. By defining an interface for general mesh applications, with a choice of (state-of-the-
art) re-partitioning components, a large section of the scientific computing community will be
able to achieve scalable performance with their complex applications. The scope of the library
exploitation is mesh-based applications that include dynamic and adaptive meshing or re-meshing
and/or dynamically changing computational loads on otherwise static meshes. Though the project
includes evaluation using industrial finite element codes, the mesh interface definition is also
directly applicable to finite volume codes.
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It has been shown that the conversion routines from the general mesh interface to an appropriate
graph representation allow graph partitioners to minimise the (mesh-oriented) DRAMA Cost
function. First results have shown that the overhead of the parallel execution of the library
partitioners is low enough to allow major gains to be achieved within the application code. Future
project activities wil l include rigorous evaluation and benchmarking for industrial problems.

That not all re-partitioning problems can be solved with a single-phase re-partitioning has been
demonstrated with the PAM-CRASH code, where multiple computational phases occur. The
current research developments into multi-constraint or multi-phase partitioners are also being
investigated within the DRAMA framework and the first results presented here are most
encouraging. The future focus will be to ensure that the improvements offered by these
partitioners can be realised in parallel implementations.
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