
Shape-optimized mesh partitioning and load
balancing for parallel adaptive FEM q

Ralf Diekmann a,*, Robert Preis b, Frank Schlimbach c,
Chris Walshaw c

a Hilti AG, Corp. Research, Schaan, Liechtenstein
b Department of Mathematics and Computer Science, University of Paderborn, F�urstenallee 11,

D-33102 Paderborn, Germany
c School of Computing and Mathematical Sciences, The University of Greenwich, 30 Park Row,

Greenwich, London SE10 9LS, UK

Received 15 February 1999; received in revised form 24 September 1999; accepted 24 September 1999

Abstract

We present a dynamic distributed load balancing algorithm for parallel, adaptive Finite

Element simulations in which we use preconditioned Conjugate Gradient solvers based on

domain-decomposition. The load balancing is designed to maintain good partition aspect ratio

and we show that cut size is not always the appropriate measure in load balancing. Fur-

thermore, we attempt to answer the question why the aspect ratio of partitions plays an im-

portant role for certain solvers. We de®ne and rate di�erent kinds of aspect ratio and present a

new center-based partitioning method of calculating the initial distribution which implicitly

optimizes this measure. During the adaptive simulation, the load balancer calculates a bal-

ancing ¯ow using di�erent versions of the di�usion algorithm and a variant of breadth ®rst

search. Elements to be migrated are chosen according to a cost function aiming at the opti-

mization of subdomain shapes. Experimental results for Bramble's preconditioner and com-

parisons to state-of-the-art load balancers show the bene®ts of the construction. Ó 2000

Elsevier Science B.V. All rights reserved.

Keywords: Mesh partitioning; Load balancing; Shape-optimization; Aspect ratio; Parallel; Adaptive;

Finite element method

www.elsevier.com/locate/parco

Parallel Computing 26 (2000) 1555±1581

q Parts of the results appeared in the Proceedings of IRREGULAR'98 and EUROPAR'98 (Springer

LNCS 1457 and 1470).
* Corresponding author.

E-mail addresses: diekral@hilti.com (R. Diekmann), robsy@upb.de (R. Preis),

F.Schlimbach@gre.ac.uk (F. Schlimbach), C.Walshaw@gre.ac.uk (C. Walshaw).

0167-8191/00/$ - see front matter Ó 2000 Elsevier Science B.V. All rights reserved.

PII: S 0 1 6 7 - 8 1 9 1 (0 0) 0 0 0 4 3 - 0

1. Introduction

Finite elements (or ®nite di�erences or ®nite volumes) can be used to numeri-
cally approximate the solutions of partial di�erential equations (PDEs). The PDEs
describe, for example, the ¯ow of air around a wing or the distribution of tem-
perature on a plate which is partially heated [3,9]. The domain on which the PDE
has to be solved is discretized into a mesh of ®nite elements (triangles or rectangles
in 2D, tetrahedra or hexahedra in 3D) and the PDE is transformed into a set of
linear equations de®ned on these elements [45]. The coupling between equations is
given by the adjacencies in the mesh. Usually, iterative methods such as conjugate
gradient (CG) or multigrid (MG) are used to solve the linear systems [3,35]. The
quality of solutions obtained by such numerical approximation algorithms heavily
depends on the accuracy of the discretization. In particular, in regions with steep
solution gradients, the mesh has to be re®ned su�ciently, i.e., the elements have to
be small in order to allow accurate approximation. Unfortunately, the regions with
large gradients are usually not known in advance. Hence, the meshes either have to
be re®ned regularly with the consequence that there is a large number of small
elements in regions where they are not required, or the re®nement takes place
during the calculation based on error estimates of the current solution [41]. Ob-
viously, the second variant is to be favored. Its solutions should have the same
quality as if the mesh was re®ned regularly but the number of elements and, thus,
the time needed to determine the solution is only a small fraction of the regular
case.

The parallelization of numerical simulation algorithms usually follows the single-
program multiple-data (SPMD) paradigm: The same code is executed on each
processor but on di�erent parts of the data. This means that the mesh is partitioned
into P subdomains where P is the number of processors, and each subdomain is
assigned to one processor [9,11]. Because iterative solution algorithms mainly per-
form local operations, i.e., data dependencies are de®ned by adjacencies in the
mesh, 1 the parallel algorithms only require communication at the partition
boundaries. The parallel e�ciency depends on two factors: an equal distribution of
data (computational load) on the processors, and a small communication overhead
achieved by minimizing the boundary length.

Together with the additional constraint of minimizing the number of cut edges
(the total interface length in the case of FE-mesh partitioning), the mesh partitioning
problem turns out to be NP-complete [18], i.e. it is currently not solvable to opti-
mality in a reasonable amount of time. Fortunately, a number of quite e�cient graph
(mesh) partitioning heuristics (approximation algorithms) have been developed
[12,14,22,27,28,32,38]. Most of them optimize the balance of subdomains (their de-
viation from the mean number of elements) and the number of cut edges, the cut size.
Optimizing for cut size is su�cient for many applications such as standard iterative

1 Modulo some global dependencies in certain iterative schemes. We do not consider these since they are

independent of the way the mesh is partitioned.

1556 R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581

equational solvers for PDE problems. However, there are certain other cases where
this is not true. If, for example, the decomposition is used to construct pre-condi-
tioners [3,5], cut and balance may no longer be the only factors which determine the
e�ciency. In addition to a signi®cant amount of time spent on the solution of in-
terface problems, the shape of subdomains heavily in¯uences the quality of pre-
conditioning and, thus, the overall execution time [40]. First attempts at optimizing
the aspect ratio (AR) of subdomains rate elements depending on their distance from
the center of a subdomain [7,11] and include this into the cost function of a local
iterative search heuristic such as the Kernighan±Lin algorithm (KL) [16]. In this
paper we use a simple, center-based partitioning heuristic which optimizes subdo-
main shapes implicitly.

In the case of adaptive re®nement, the distribution of data on the processors will
become unbalanced if the number of newly generated elements is not the same on
each processor (as is usually the case with solution adaptive re®nement). Therefore,
the partition has to be altered in order to re-establish a balanced distribution. A
number of solutions to this load balancing problem are based on re-partitioning,
where (sometimes even sequential) mesh partitioning algorithms are used [30]. We
propose a two-phase distributed load balancing algorithm which takes the existing
mesh partition into account. The ®rst phase determines the amount of load that has
to be moved between di�erent subdomains in order to balance the distribution
globally. The adjacencies between subdomains de®nes the quotient graph [11]. The
algorithm determines a balancing ¯ow on this graph. The ¯ow tells the processors
how many data items (i.e., elements) they have to move to each of their neighbors.
This balancing ¯ow calculation can optionally use di�erent kinds of di�usive
methods [4,8], in particular ®rst and second order di�usion iterations [13,19], and a
heuristic for convex non-linear min-cost ¯ow [1].

In the second phase, the elements that have to be moved are identi®ed. When
choosing these elements, the load balancer tries to optimize partition AR in addition
to load balance. The elements at partition boundaries are weighted by a cost func-
tion consisting of several components. The migration chooses elements according to
their weight and moves them to neighbors. The element weight functions are used to
``guide'' the balancing ¯ow calculation. We consider the existing partition and de®ne
weights for the edges of the quotient graph expressing a kind of ``cost'' for moving
elements over the corresponding borders. The aim is to avoid a large ¯ow of elements
between parts with a small common border.

The main contributions of this paper are:
· We attempt to answer the question why cut size (interface length) might not al-

ways be the right measure in balancing adaptive meshes.
· We present numbers of iterations of parallel domain-decomposition precondi-

tioned conjugate gradient solvers (DD±PCG) on irregular adaptive meshes.
· We investigate di�erent graph partitioning algorithms with respect to AR and dis-

cuss a center-oriented method which optimizes this measure implicitly.
· We discuss the problem of dynamic load balancing for solvers using adaptive

re®nement and present new element migration strategies aimed at optimizing
subdomain AR.

R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581 1557

· We modify existing balancing ¯ow algorithms to support the shape optimization
task.

All results presented apply (so far) to 2D meshes. Some possible extensions to the 3D
case are discussed in Section 5. The partitioning and load balancing algorithms are
included in parallel adaptive FEM (PadFEM). This is an object-oriented environ-
ment which supports parallel adaptive numerical simulations [3,9]. It includes
graphical user interfaces, mesh generators for 2D and 3D domains, mesh parti-
tioning algorithms [12], triangular and tetrahedral element formulations for Poisson
and Navier±Stokes problems [45], di�erent solvers (especially DD±PCGs) [3,5], error
estimators [41], mesh re®nement algorithms [26], and load balancers [13].

The next section gives an introduction to the ®eld of balancing adaptive meshes,
DD-preconditioning, and shape of subdomains. A short overview of existing ap-
proaches is given too. Section 3 introduces us to a center-oriented method for the
initial load distribution which implicitly optimizes the AR. Comparisons with results
from the Chaco [21], Jostle [44] and Metis [27] partitioning tools are discussed.
Section 4 considers the dynamic load balancing problem for parallel adaptive DD-
preconditioners. It starts with the description of element migration strategies in
Section 4.1. This second load balancing phase is presented ®rst, since parts of it are
used in Section 4.2 where the balancing ¯ow calculation is described. Section 4.3
®nishes the paper with a number of results of AR and iteration numbers of the DD±
PCG solver of PadFEM. Comparisons are made to the partitioning tool Jostle [44].

2. The problem

2.1. Balancing adaptive meshes

In most cases, the computational load of a ®nite element problem can be mea-
sured in terms of numbers of elements. Thus a load balanced parallel execution
requires a partition of the mesh. The mesh is partitioned into subdomains each of
which contains the same number of elements. Such an initial partition can be gen-
erated by the use of any of the existing e�cient graph partitioning algorithms. If the
mesh is re®ned adaptively, the existing partition will usually become unbalanced.
Several existing implementations of parallel adaptive grid applications solve this
problem by repartitioning the mesh. This is done by the use of any of the afore-
mentioned partitioning methods [30]. The drawback of such an approach is twofold:
®rst, the mesh has to be routed to a single processor if the partitioning tool is se-
quential. Such an approach is obviously not scalable to large numbers of processors
and to large meshes. Second, even if a parallel partitioning tool is available (such as
ParMetis [37] or PJostle [44]), a new partition may di�er greatly from the existing
one. As a result, large amounts of data may have to be shifted between processors.
Although there are attempts to minimize this data-movement [30], comparisons to
approaches which take the existing distribution into account show that if the mesh
adaption changes the mesh only slightly, only a small fraction of the data movement
is really necessary [44].

1558 R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581

The load balancing module in PadFEM follows a di�usive strategy [10,13,37]
applied to the quotient graph from a given partition. The graph is de®ned by the
adjacencies between subdomains and contains one node for each subdomain. Edges
denote common borders between the corresponding subdomains. Fig. 1 shows an
unbalanced partition of a simple mesh (domain ``square'') into six subdomains (left)
and the resulting quotient graph (center). Any reasonable load balancing which takes
the existing distribution into account has to move data (elements) via the edges of
this graph. We add weights to nodes of the graph according to their load and de-
termine a balancing ¯ow on the edges. This ¯ow has the property that the partition is
globally balanced after shifting a corresponding amount of load (elements) between
adjacent subdomains. The ¯ow is given as edge labels in Fig. 1. It can be determined
by the use of network ¯ow algorithms (which are ± unfortunately ± usually not
parallel) or by local iterative methods such as di�usion or dimension exchange [4,8],
which are parallel by de®nition. Second, in the element migration phase, the load is
actually moved. Input to this phase is the ¯ow on the quotient graph. The task is to
choose element migrations in order to ful®ll the ¯ow demands. Their choice may
consider additional cost criteria such as minimizing the boundary lengths or opti-
mizing the shape of subdomains.

2.2. Preconditioning by domain decomposition

We brie¯y describe how preconditioning techniques based on domain decompo-
sition work, based on our own implementation of the BPS algorithm of Bramble
et al. [5]. There are several variants such as, e.g., the conjugate gradient boundary
iteration method (CGBI) by Blazy et al. [3] which improve the BPS algorithm. From
the algorithmic point of view though, they only slightly di�er from the original
method. Let us consider a Poisson problem with homogeneous Dirichlet boundary
conditions (Fig. 2 (left)).

ÿ Du�x; y� � f �x; y� 8�x; y� 2 X;

u�x; y� � 0 8�x; y� 2 C:
�1�

Fig. 1. An unbalanced partition (left), the corresponding quotient graph with balancing ¯ow (center), and

the resulting balanced partition after migration (right).

R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581 1559

This kind of elliptic partial di�erential equation is derived from a discretization of
the Navier±Stokes equation using splitting methods (pressure correction, [3]). Using
standard ®nite element formulations, Eq. (1) is transformed into a system Au � f of
linear equations where the structure of A corresponds to the structure of the mesh. In
order to increase the speed of convergence of the normal conjugate gradient iterative
solver (CG), the linear system is preconditioned with a matrix B [45] (cf. Fig. 2):

Bÿ1Au � Bÿ1f : �2�
The parallelization of the CG solver is usually based on domain decomposition (cf.
Fig. 2) where the mesh (the domain) is split into a number of subdomains which are
assigned to di�erent processors.

The domain decomposition preconditioning is based on the BPS algorithm and
solves the equation marked (*) in Fig. 2 in three steps:

(1) For each subdomain Xi it ®rst computes

ÿDv � r in Xi with v � 0 on ~C;

where r is the residuum and ~C are the arti®cial (inner) boundaries. This leads to a
system of linear equations Av � r within each subdomain which are solved using a
sequential V-cycle multigrid.

(2) The next step is to compute a Laplace Beltrami problem [3]

�ÿD�ÿ1=4w � rC � �v�~C
with homogeneous boundary condition, where �v� computes the jump over ~C of v.
This leads us to a system of linear equations with a dense matrix Cw � �v�~C. C can be
approximated by a tridiagonal matrix ~C which simpli®es the task of calculating the
inverse ~Cÿ1 (see [3]).

Fig. 2. Domain X with boundary C, decomposition and the preconditioned CG algorithm (cf. e.g. [3]).

1560 R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581

(3) The last step uses w to compute

ÿDv̂ � 0 in Xi with v̂ � w on ~C:

This again leads us to a system of linear equations which can also be solved by the
use of a V-cycle multigrid on each subdomain Xi.

The solution s of (*) (Fig. 2) is now given by s � v� v̂ on all subdomains. For
each iteration of the global CG method, Steps 1±3 have to be performed. Fig. 3 il-
lustrates the DD±PCG algorithm on a simple square domain X split into two parts.
The ®rst picture shows the solutions on Xi with ~C � 0 (Step 1). In the second, the
solution of the Laplace Beltrami problem on ~C can be seen and the third presents the
result after Step 3. The rightmost picture shows the ®nal solution after four global
iterations with a residual of jrjmax6 10ÿ6.

The time that is needed by such a preconditioned CG solver is determined by
two factors. First, the maximum time that is needed by any of the subdomain
solutions and second, the number of iterations of the global CG. Both factors are
at least partially determined by the shape of the subdomains. While the MG as
solver on the Xi's is relatively resistant to shape, the number of global iterations is
heavily in¯uenced by the AR of the subdomains. In a way, the subdomains can
be regarded as elements of the ``interface'' problem [16]. And just as with normal
FEM, where the condition of A is in¯uenced by the AR of elements, the con-
dition of Bÿ1A is in¯uenced by the subdomains' AR in the preconditioning case. If
rectangular shaped domains (and subdomains) are used, the relation between
shape and number of global iterations can be expressed by the easiest de®nition
of AR ± the ratio between longest and shortest boundary edge. An example is
presented in Fig. 4 where a Poisson problem is solved with DD±PCG on a regular
mesh. The domain is split into an increasing number of slices with a resulting
increase in AR. It becomes obvious that the number of global iterations grows
heavily with the AR. To show that this is not caused by the increasing number of
subdomains P, the lower curve gives the number of iterations when only P is
growing and the AR is kept constant. It can be seen that in this case the number
of iterations remains almost constant (although in fact the problem size is in-
creasing).

Fig. 3. The three steps of the DD±PCG algorithm (left to right): Subdomain solution with zero boundary

conditions, interface solution, subdomain solutions with new boundary conditions. The rightmost illus-

tration shows the solution after 4 iterations.

R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581 1561

2.3. Aspect ratios

Possible de®nitions of AR can be found in Fig. 5. The ®rst two are motivated by
common measures in triangular mesh generation where the quality of triangles are
expressed in either Lmax=Lmin (longest to shortest boundary edge) or R2

o=R2
i (the area

of smallest circle containing the domain to the area of largest inscribed circle). The
de®nition AR � R2

o=R2
i expresses the fact that circles are perfect shapes. Unfortu-

nately, circles are quite expensive to ®nd for arbitrary polygons: by the use of
Voronoi-diagrams, we can determined both in O�2n log n� steps where n is the
number of nodes of the polygon (and faster incremental update algorithms are not
known). The de®nition AR � R2

o=A (A being the area of the domain) is another
measure that favors circle-like shapes. It still requires the determination of the
smallest outer circle but turns out to be better in practice. We can do a further step
and approximate Ro by the length B of the boundary of the domain (which can be
determined fast and updated incrementally in O(1)). For a sub-domain with area A
and perimeter B; AR � B2=16A is the ratio between the area of a square with pe-
rimeter B and area A. This de®nition assumes that squares are perfect domains.

Circles o�er a better perimeter/area ratio but force neighboring domains to be-
come concave (Fig. 6 (left)). The example in Fig. 4 has already used the ®rst de®-
nition of AR : AR � Lmax=Lmin. This measure does not express the shape properly for

Fig. 4. # Iterations vs AR for DD±PCG. A rectangular domain recursively split into an increasing

number of slices (top right). A growing rectangular domain with subdomains of equal shape for each

processor (bottom right).

Fig. 5. Di�erent de®nitions of AR: Lmax=Lmin;R2
o=R2

i ;R
2
o=A and B2=16A.

1562 R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581

irregular meshes and partitions. Fig. 6 (center) presents an example. P1 is perfectly
shaped, but as the boundary towards P4 is very short, Lmax=Lmin is large. The circle-
based measures usually fail to rate jagged boundaries or inscribed corners. Fig. 6
(right) displays examples each of which have the same AR but which are very dif-
ferent in shape. According to our experience (and also from the examples),
AR � R2

o=A and AR � B2=16A turn out to be the most robust measures, which best
express the desired aims of producing compact domains.

2.4. Existing approaches

A large number of methods for the graph partitioning problem has been devel-
oped in di�erent research and application ®elds. We brie¯y discuss some of the
methods which are frequently applied for FE mesh partitioning.

The coordinate sorting (COO) method (see, e.g., [15]) is based on the vertex co-
ordinates only and is very simple and easy to implement. The mesh is cut by straight
lines perpendicular to the axis of the longest elongation of the mesh. The result is a
stripe-wise partition. The method may also be applied recursively (COO_R), re-
sulting in a more box-wise partition. Although this approach does not consider any
connectivity information of the graph, for some application graphs like, e.g., FE
meshes of simple domains, it results in parts with reasonable shapes. Greedy ap-
proaches are often based on the graph connectivity. Typically, the ®rst part of a
partition is initialized with one single element and further elements are added until
the required size is reached. Then, a new part is initialized with an unassigned ele-
ment and the new part is build up in the same greedy fashion. One possibility of
choosing new elements is to repeatedly take all non-assigned elements adjacent to
elements of the current subdomain, i.e. progressing in a breath-®rst manner (GBF,
see e.g. [14]). Another possibility is to choose an element which reduces the cut most
of all (GCF, see e.g. [12,38]). The greedy approach usually results initially in very
compact subdomains, but often the last subdomain consists of all leftover elements
and it is thus very unlikely that it has a smooth shape. More elaborate initial par-
titioners use connectivity measures based on the second smallest eigenvalue of the
graph's Laplacian. These so called spectral methods [32] are quite expensive, but
combined with fast multi-level contraction schemes they belong to the state-of-the-
art in graph partitioning software [21].

Once a partition is calculated, one can use a local improvement method to further
optimize the cut size. The KL heuristic [28] is the most frequently used local

Fig. 6. Problems of several de®nitions of AR.

R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581 1563

improvement method. It uses a sequence of logical vertex pair exchanges to deter-
mine the sets that have to be exchanged physically. Fiduccia and Mattheyses [17]
have modi®ed the method. They use a sequence of single vertex moves to determine
the sets. Meanwhile similar to the KL algorithm, the Helpful-Sets (HS) heuristic is
based on local rearrangements [12]. It, too, has to search for two sets of equal size
(one in each part), which will improve the cut if they are exchanged. Unlike KL, it
does not only consider single vertices but also whole sets that take part in the ex-
change steps.

There are several mesh partitioning software libraries and most of them are freely
available for academic research. The most popular examples are Chaco [21] by
Hendrickson and Leland which includes inertial and spectral partitioning [22,32] as
well as multilevel-strategies [2,23], Metis [27] by Karypis and Kumar, which includes
fast multilevel strategies, Scotch [31] by Pellegrini and Roman, which includes
mapping facilities, Top/Domdec [15] by Farhat et al., Jostle [43,44] by Walshaw et al.
or Party [33] by Diekmann and Preis.

The tools Metis and Jostle are also designed to support partitioning and load
balancing of adaptive mesh calculations in parallel. Both use the algorithm of [24]
in order to determine the balancing ¯ow. What is more, both use a multilevel
strategy for shifting elements, where optionally the coarsening is only done inside
subdomains. Jostle uses the concept of relative gain optimization at partition
boundaries. Metis uses so called enforcement levels and greedy re®nement. Both
tools optimize according to the number of edges crossing the partition boundaries.
The AR is not directly considered. Load balancers particularly designed to optimize
the subdomain AR can be found in [11,16,39,42]. The tool PAR2 was originally
constructed as a parallel partitioner, but it can also be used in an adaptive envi-
ronment [11]. The method described in [16] is an iterative partitioner which tries to
improve the subdomain AR in a number of steps. In this work, DD-PCG solvers
are used, but not in an adaptive environment. Other attempts are to optimize
subdomain shapes by the use of meta-heuristics such as simulated annealing (SA)
[25] or Tabu Search [39].

3. Partitioning the initial mesh

Mesh (graph) partitioning is an area of active research. As mentioned above, the
problem of partitioning a graph into a number of equally sized parts such that the
number of cut edge is minimized is NP-complete [18]. Nevertheless, the initial mesh
of a parallel adaptive FEM simulation is not usually excessively large and will be
re®ned throughout the simulation. In this section we propose a center-oriented
method called bubble (BUB) for partitioning the initial mesh which implicitly op-
timizes the shape of subdomains. Some of the ideas this method is based on are very
simple and natural and it has some similarities with di�erent other approaches.
Bubble generalizes some ideas of the bisection growing method of [38]. A similar
center-based approach has been developed in [20] and a parallel center-based ap-
proach can be found in [43]. An anonymous referee pointed out the similarities to an

1564 R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581

algorithm for vector quantizer design [29] where the vector entries are partitioned
while considering a reproduction alphabet with as many elements as there are parts.

The idea of bubble (displayed in Fig. 7) is to represent a partition by a set of seed
vertices, one for each part, from which the subdomains are grown simultaneously in
a breadth-®rst manner until the whole mesh has been covered. Colliding parts form a
common border and keep on growing along this border ± just like soap bubbles in a
bath. After the whole mesh is covered, the algorithm determines its ``center'' vertex
for each part. This is de®ned as the new seed and the subdomain growing process
starts again. The iteration will be stopped if the movement of all seeds is small en-
ough, i.e., if the seed vertices are close to the centers for all parts. The algorithm is
based on the observation that within ``perfect'' bubbles, the center and the seed
vertex coincide. The distances in this method may either be chosen as the path length
or as the Euclidean distances. In the case of path length the method works also on
graphs without geometrical information.

The Bubble-algorithm is shown in Fig. 8. In order to ®nd the initial seeds, we start
a breadth-®rst search (BFS) from a vertex with minimal degree (in the case of FE-
meshes, this is usually an element at a domain corner) and search for the vertex
which is farthest from this starting point. This vertex is chosen as the ®rst seed. We

Fig. 7. The iterative Bubble method.

Fig. 8. The Bubble algorithm.

R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581 1565

then repeat to perform simultaneous BFS from all seeds that have been found so far
to determine a vertex which is farthest from all seeds. It becomes the next seed.
Altogether, P BFSs are performed with P being the number of parts. With this
approach of each new seed having the maximum distance from all previous ones we
distribute the seeds fairly evenly over the graph. The path length is used as distance
measure in the ®rst loop. The main loop of Bubble is started by growing the parts
from each seed in a breadth-®rst manner, i.e., each part checks if any of its elements
is adjacent to an uncovered element and the smallest part with at least one such
adjacent element grabs the one with the shortest Euclidean distance to its seed and
assigns it to that part. Only vertices are added which are adjacent to vertices pre-
viously assigned to the same part, ensuring connected parts. The ordering of smallest
parts tries to keep the ®nal load di�erence small and the choice of an adjacent ele-
ment with shortest Euclidean distance bene®ts a low AR of that part. This is re-
peated until all vertices (elements) are covered. Afterwards, new seeds are calculated
by each part independently by searching for the center vertices. This part could be
executed in parallel. We de®ne the center of a part to be the vertex for which the sum
of Euclidean distances to all other vertices in that part (we call this the distance-
value) is minimal. One may ®nd the centers by calculating the distance values for all
vertices, but this would have a time consumption of O�#elements2�. To avoid this,
we calculate the distance-values for the seed as the initial center and all its adjacent
vertices and move the center to the neighbor with smallest value; this process is
repeated until a local minimum is found. The Bubble algorithm will terminate if in
an iteration none of the seeds move any more. To avoid cyclic movements of seeds
(which sometimes occur), we stop the algorithm if the AR does not improve for 10
consecutive iterations.

Bubble produces connected parts which are, in general, very compact and have a
smooth shape. A major drawback of Bubble is the lack of a guarantee for balanced
partitions. Although at the end the seeds are spread out evenly over the whole graph,
the parts do not have to contain the same number of elements. To repair this, one
may add a local partitioning method to balance the load, trying to further optimize
either the cut or the AR.

We investigate the performance of di�erent types of mesh partitioning strategies
with respect to the number of global iterations of the DD±PCG, the cut size and the
AR. We include the simple coordinate methods COO and COO_R and the greedy
methods GBF and GCF as described in Section 2.4. Bubble is used without any load
balancing, as well as with additional load balancing minimizing either the cut or the
AR, where load balancing methods as described in Section 4 are used. In addition,
we use the default settings of the Party, Jostle, K-Metis and P-Metis graph-parti-
tioning libraries, as well as a Simulated Annealing code which is designed to optimize
the AR. Fig. 9 displays the results of the partitioning of the meshes turm (with 531
elements) and cooler (with 749 elements, Fig. 11) into 8 parts. The test case for the
numerical solver is a Poisson problem with Dirichlet-0 boundary conditions. The
number of iterations for the tested methods di�er signi®cantly. It can be observed
that the AR Lmax=Lmin and Ro=Ri do not follow the line of the iteration numbers,
whereas the values of Ro=A and B2=16A roughly do so. Unlike in the simple example

1566 R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581

of Section 2, the results additionally indicate that a low cut also leads to a fairly low
number of iterations. A comparison of the tested partitioners shows that the simple
coordinate and the greedy methods usually result in large iteration numbers. For the
bubble variations, the balance by improving the AR B2=16A leads to lower iteration
numbers than balancing by improving the cut. Furthermore, the partitions calcu-
lated by the partitioning libraries and the Simulated Annealing approach also lead to
similarly low iterations numbers.

Table 1 shows additional results using the mesh crack with 20,141 elements as
example. The mesh is partitioned into 16 parts and the Bubble method with its
variations is compared with the default settings of the partitioning libraries Chaco
(Multilevel approach), K-Metis, P-Metis and Jostle. We list the cut, the average
ARB2=16A of all parts, and the number of iterations of the DD±PCG as measures
The results reveal that the AR is a better measure for the number of iterations than

0

10

20

30

40

50

60

70

9 10 7 11 8 5 6 12 2 1 3 4

Ite
ra

tio
ns

/C
ut

s/
A

R
s

Methods

#Its
Cut

L_max/L_min
R_o/R_i

R_o/A
B*B/16A

0

5

10

15

20

25

30

35

40

8 12 7 11 5 9 10 2 3 6 1 4

Ite
ra

tio
ns

/C
ut

s/
A

R
s

Methods

#Its
Cut

L_max/L_min
R_o/R_i

R_o/A
B*B/16A

Fig. 9. Results of example turm (531 elements, top) and example cooler (749 elements, bottom). The

methods are listed with increasing numbers of global PCG iterations. Compared Methods are 1:COO,

2:COO R, 3:GBF, 4:GCF, 5:BUB, 6:BUB+CUT, 7:BUB+AR, 8:Party, 9:Jostle, 10:K-Metis, 11:P-Metis,

12:SA.

R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581 1567

the cut. To give a telling example, the partition calculated by Pmetis has the lowest
cut, but needs the largest number of iterations. The partition calculated by bubble
has a high cut size, but if it is load-balanced by further optimizing the AR, it ®nally
succeeds in achieving the overall goal: minimizing the number of global iterations of
the DD±PCG algorithm. If the bubble partition is load-balanced minimizing the cut
instead, the cut becomes smaller. However, the AR and the number of iterations are
not as low as for minimizing the AR. Combined with shape optimizing load bal-
ancing methods which are described in the following, bubble serves as reasonable
initial partitioner. The times to calculate the partitions was fairly small for all
methods due to the medium sized examples. In an adaptive environment, the par-
titioning only has to be performed on the initial mesh which is usually small. For
larger meshes, bubble could be used as partitioning method for the coarse graph in
the multilevel paradigm after coarsening the large initial mesh into a much smaller
one of similar structure. The Chaco, Jostle and Metis tools have already applied this
multilevel strategy.

4. Shape optimized dynamic load balancing

We now consider the problem of dynamic load balancing in the case of the mesh
being re®ned adaptively. Our solution to this problem is a two-step approach: ®rst, a
balancing ¯ow is calculated on the edges of the partition quotient graph. Afterwards,
elements at partition boundaries are chosen and migrated in order to ful®ll the de-
mands of the ¯ow. We ®rst discuss di�erent functions for choosing elements which
aim at considering the shape of the partition. This second step is described ®rst
because some of the element rating functions introduced here are used in Section 4.2
to guide the balancing ¯ow calculation. Results in Section 4.3 compare di�erent
functions for rating elements with regard to partition shape. The bene®ts of the
di�erent steps are investigated and the ®nal algorithm is compared to Jostle.

4.1. Element migration

The basic idea of the element migration phase is to rate elements at partition
boundaries according to certain cost functions and to greedily choose elements that
have to be moved to neighboring processors based on this rating, until the necessary
load has been moved. The migration phase starts with a valid balancing ¯ow

Table 1

Comparisons for mesh crack (20,141 elements) partitioned into 16 parts

Chaco Metis Jostle BUB

Kÿ Pÿ +CUT +AR

Cut 856 800 760 768 920 799 813

AR 1.93 1.85 1.98 1.92 1.92 1.96 1.87

Iter. 46 46 53 44 50 50 44

1568 R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581

determined by the phase of ¯ow calculation which will be de scribed in Section 4.2.
For now, assume that the ¯ow is represented as values xij on edges �i; j� of the
quotient graph (i.e., xij elements have to be moved from partition i to partition j. The
migration phase aims at balancing the load such that the AR of subdomains is
maintained, improved, or deteriorates as little as possible.

As discussed in Section 2.3 we use the perimeter-to-area ratio as a de®nition of
AR. For a subdomain Pi with area Ai and perimeter Bi (its boundary length) its ARi

is given by

ARi � B2
i

16Ai
: �3�

The simplest way to rate elements at partition boundaries is to count the change in
cut size (of the element graph) when moved to other partitions. For an element e, let
ed�e; i� be its number of edges adjacent to elements in Pi. The change in cut when e is
moved from Pi to Pj is given by

Ccut�e; i; j� � ed�e; i� ÿ ed�e; j� �4�
For many FEM meshes constructed of triangles, the resulting element graph has a
maximal degree of three and the change in Ccut is at most 1. It is known [6] that local
graph partitioning algorithms perform badly on degree-3 graphs, so it is no surprise
that this element rating function does not produce satisfying results. We will see
comparisons later on. Nevertheless, it is used in several applications and, if combined
with other sophisticated methods such as multilevel schemes, it can still work very
well [44].

We can also take the change in AR to rate elements at partition boundaries. First,
de®ne AR � RiARi as the AR of a partitioned mesh. Second, let ae be the area of
element e; be the length of its border, and be�i� the length of its border to elements in
subdomain Pi. Then

Car�e; i; j� � B2
i

16Ai
� B2

j

16Aj
ÿ �Bi ÿ be � 2be�i��2

16�Ai ÿ ae� ÿ �Bj � be ÿ be�j��2
16�Aj � ae� �5�

will be the change in AR, if e is moved from Pi to Pj. We can simplify the calculations
of (5) by just taking the change in total border length:

CB�e; i; j� � be�i� ÿ be�j�: �6�
The drawback of the functions described so far is their ``local'' nature. They rate
elements only based on local changes in a cost function, but they have no idea of
which element will have to be preferred if two of them have the same value. And the
case that two elements have the same value does not mean they are equally attractive
for the task of optimizing the overall AR. It just means that they have the same
number of external edges (4), the same size and border length (5) or the same border
length (6). A ``global'' view, whether it is favorable for a subdomain to own certain
elements or not, is lacking.

A ®rst step towards a kind of ``global'' view is to consider the distances of ele-
ments from the center of their subdomain. If all boundary-elements have the same

R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581 1569

distance to this center, the domain will be a circle and will have a good AR. Elements
lying far away from the center might be good candidates to move. Let Ci be the
center of gravity of subdomain i. If we de®ne the center ce of element e to be the
average of its node coordinates, Ci will be de®ned as

Ci � 1

Ai

X
e2Pi

ce � ae: �7�

Let dist�e; i� be the (Euclidean) distance of element e to the center of subdomain Pi.
The function

Crd�e; i; j� � dist�e; i� ÿ dist�e; j� �8�
is called the relative distance of element e. The idea behind this function is to prefer
elements which are far away from the center of their own subdomain and, addi-
tionally, near to the center of the target partition. Such function of element rating
can be found in some implementations [7,11,36]. The problem is that they do not
account for the real physical size of a domain. A large partition might easily move
elements to a small one, even if this does not improve the AR of any of them. We can
de®ne Di as the average distance of the centers of all elements of subdomain Pi from
its center Ci:Di can be used to normalize the distance function (8) [11].

Csrd�e; i; j� � dist�e; i�
Di

ÿ dist�e; j�
Dj

�9�

is called the scaled relative distance function. Fig. 10 (left) reveals the advantage of
Csrd in contrast to Crd. Without any scaling, P3 prefers to move elements to P2,
whereas a move towards P1 improves the AR of P1 and P3.

If we consider the shape of a common border between two subdomains, the ideal
would be to have a straight line perpendicular to the interconnection of the centers of
both. If the border is circular in any direction, one of the domains will become
concave which is not desirable. If elements are moved between subdomains which are
very di�erent in size, the in¯uence of the smaller one on Csrd will become larger with
increasing distance from the line connecting both centers. Thus, elements far away
from this line are more likely to be moved than those lying on or near to this line.

Fig. 10. Scaled distances (left). Angle (right).

1570 R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581

This e�ect can be observed in Fig. 11 (left) where the domain ``Cooler'' is re®ned in
10 steps from initially 749 elements to ®nally 7023. The re®nement mainly takes place
at the upper part of the domain and the subdomains lying in the corresponding
region give up elements according to Csrd. To avoid this e�ect, we superimpose Csrd

by another function Ca�e; i; j� � cos a, where a is the angle between the lines Ci $ Cj

and Ci $ ce. Fig. 10 (right) presents the construction. The value of cos a will be large,
if angle a is small, i.e., the superposition slightly increases the values of those ele-
ments which lie in the direction of the target partition. Fig. 11 (right) shows the e�ect
on the same example of Fig. 11 (left). As intended, the borders between subdomains
are much straighter and the target domains are less concave.

A ®rst comparison of the di�erent rating functions is to be found in Table 2. It
shows the maximum and average AR as well as the Cuts, if the domain ``Square'' is
re®ned in 10 steps from initially 115 elements to ®nally 10,410. The values for AR
given here and in the rest of the paper are scaled to 1.0 being an ``optimal'' shape.
Average values of >1:6 can be considered as unacceptable. It can be observed that
Ccut is not only bad in optimizing AR but also in ®nding partitions with a good cut.
The explanation has already been given: As the graph has a maximal degree of 3,
local methods are likely to fail. Interestingly, Car and CB do not perform well either.
The purely local rating of this functions does not allow a good AR optimization. Crd

and Csrd are quite similar to each other because the di�erence in size of the subdo-
mains is not very large in this example. The e�ects of Ca are not directly visible in
terms of maximum or average AR. This kind of ``cosmetic'' operation becomes more
obvious in Fig. 11 (left) and (right).

Table 3 shows similar results for combinations of the di�erent C's. It can be
observed that additional improvements will be possible, if such combinations are
used. Unfortunately, the possibilities of di�erent combinations enlarge the space of

Fig. 11. Migration according to Csrd (left) and to Csrd � Ca (right).

Table 2

AR and cut obtained with di�erent rating functions

AR-max AR-avrg Cut-max Cut-avrg

Ccut 2.03 1.66 190 128

Car 1.85 1.55 191 130

CB 1.88 1.56 187 129

Crd 1.53 1.33 142 92

Csrd 1.47 1.29 144 90

R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581 1571

possible parameter settings. However, generally speaking, Csrd combined with Ca is a
good choice for an element rating function.

4.2. Balancing ¯ow calculation

In Section 2.1 we have de®ned the quotient graph and balancing ¯ows on this
graph. We will now brie¯y review possible algorithms that are suitable to calculate
balancing ¯ows. Furthermore we will discuss modi®cations to support the element
migration phase.

4.2.1. Possible solutions
Let G � �V ;E;w� be the quotient graph of a load balancing problem (Fig. 1). G

has n � jV j nodes, m � jEj edges and there are load values wi attached to each node
i 2 V expressing the number of elements of the partition, i is representing. The edges
in G express the adjacencies between subdomains (i.e., if two subdomains are not
adjacent, then the corresponding edge does not exist either). The task of the bal-
ancing problem is to ®nd a ¯ow xij of load on edges �i; j� 2 E of the graph such that
after having moved the desired numbers of elements, the load is globally balanced,
i.e. wi � �w 8i 2 V . Since the ¯ow is directed, we need to de®ne (implicit) directions
for edges. We may assume that edges are directed from nodes with smaller numbers
to nodes with larger numbers. A ¯ow of xij < 0 on edge �i; j� 2 E then means that
ÿxij load has to be moved from node j to i.

Let A 2 fÿ1; 0; 1gn�m
be the node-edge incidence matrix of G. The edge directions

are expressed by the signs (from �1 to ÿ1). The matrix L � AAT is called the La-
placian matrix of G. If we de®ne x 2 Rm to be the vector of ¯ow values, and if we like
to minimize the total amount of ¯ow, we will search for an x satisfying

Minimize
X
�i;j�2E

jxijj subject to Ax � wÿ �w: �10�

Eq. (10) is known to be the min-cost ¯ow problem [1]. The question of what are good
cost criteria for such a ¯ow is not easy to answer. It is fairly obvious that any so-
lution to (10) shifts the ¯ow only via shortest paths in the network. Thus, it often
uses only a small fraction of the available edges, a quality that might not be desir-
able. This is especially the case when afterwards the shape of subdomains has to be
considered.

Table 3

Combined cost functions

AR-max AR-avrg Cut-max Cut-avrg

Crd � 0:2CB 1.365 1.222 119 80

Csrd � 0:2CB 1.342 1.201 131 84

Crd � 0:4Ca 1.572 1.359 142 93

Csrd � 0:6Ca 1.496 1.322 140 90

Crd � 0:2CB � 0:2Ca 1.405 1.246 125 83

Csrd � 0:2CB � 0:4Ca 1.392 1.249 134 85

1572 R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581

A compromise between the con¯icting goals of not shifting too much load but
using all edges more or less equally might be the Euclidean norm of the ¯ow de®ned
as kxk2

2 �
P

x2
ij. This measure turns (10) into a non-linear, but convex optimization

problem which is still solvable in polynomial time. For this special type of problem,
solutions can be found easily. Hu and Blake propose the use of Lagrange multipliers
for a solution of Ax � wÿ �w [24]. The method requires the solution of Lk � wÿ �w
and the ¯ow is afterwards given by xij � ki ÿ kj. Lk � wÿ �w is easy to solve in
parallel, because L directly relates to the quotient graph G (in fact, L is topologically
equivalent to G).

Other local iterative methods determine x directly by performing

xt � nATwt and wt�1 � wt ÿ Axt: �11�
Iteration (11) is similar to wt�1 � Mwt with iteration matrix M � �I ÿ nL� and pa-
rameter n6 1=max deg�G�. It is known as the di�usion method [4,8]. Some schemes
try to speed up the convergence of this local iterative method by using non-homo-
geneous iteration matrices M, optimal values of n [13], and over-relaxations such as
wt�1 � bMwt � �1ÿ b�wtÿ1 [19]. It can be shown that all of these local iterative
methods determine ¯ows x with minimal kxk2 [10].

4.2.2. Guidance of ¯ow: Local iterative methods
We can use any of the above mentioned methods to calculate the balancing ¯ow in

PadFEM. The drawback here is the fact that they do not take into account the
``quality'' of elements at partition boundaries, the length of the boundaries, and their
position relative to the centers of their partitions. The edges in G just denote
neighborhoods between subdomains, regardless of the number of elements along this
border, and the shapes of the corresponding partitions.

As an initial idea, we can put weights on the edges of G expressing the cost (or
bene®t) of moving elements via certain edges to consider the task of shape optimi-
zation within the balancing ¯ow calculation. We can use the element rating functions
de®ned in Section 4.1 to perform this task. For a subdomain Pi, let Boi be its set of
border elements, and Boi�j� the elements at the border adjacent to subdomain Pj. We
de®ne the weight xij on edge �i; j� 2 E by

xij � 1

jBoi�j�j
X

e2Boi�j�
e62Boi�k�8k 6�j

C�e; i; j�; �12�

where C can be any of the cost functions and even combinations of Section 4.1. In
the iteration process of (11), the parameter n de®nes the amount of load to shift
between neighboring processors per step, depending on their load di�erence. If we
de®ne n to be

nij � xijP
k xik

; �13�

edges with large weights are preferred during the balancing (recall that the ¯ow
calculation is only a pre-step to the real load movement; so the borders Boi�j� do not
change in this step).

R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581 1573

Table 4 shows results of the di�usion method if n is chosen according to (13) and
the xij's use di�erent element rating functions C. The values given in Table 4 are
mean values of experimental results with the given edge weighting function and
several di�erent combinations of the C's as migration rating functions. Cu denotes
the case of no edge weighting. We can see that there are slight improvements in AR
for certain examples, but that this approach is generally not helpful. A reason might
be its very local structure. If there is a large load di�erence between two processors, a
large number of elements will be shifted over their common border regardless of how
short it is and regardless of whether the receiving processor is itself able to shift
(parts of) the load to any of its neighbors properly. In the next section we will de-
scribe a method which considers weights along paths of load movement. We will see
that such an approach can support the shape optimization phase in a better way.

4.2.3. Average weighted ¯ow
The average weighted ¯ow (AWF) algorithm proceeds in two steps. It ®rst de-

termines (source/sink/amount) triples giving pairs of processors and the amount of
load that has to be moved between them. Afterwards, these ¯ows are routed via
paths in the graphs.

The ®rst step starts from each source node and searches for sinks nearby which
are reachable via ``good'' paths in the graphs. For a path p � v1; . . . ; vk, we de®ne the
path quality

q�p� � 1

k

Xkÿ1

i�1

xvivi�1
�14�

as the average quality of edges on the path. Since we are searching for paths with
high quality, the task is to maximize q�p�. Unfortunately, this makes the problem
intractable. If q�p� were just the sum of the x's, we would search for longest paths
without loops, an NP complete problem [18]. Additionally, the averaging in (14)
causes the loss of transitivity. A ``best'' path from i to j via k must no longer include
the best paths from i to k and from k to j.

We use a variance of breadth ®rst search (BFS) as a heuristic to ®nd approxi-
mately ``best'' paths. The algorithm starts from a source and searches ± in normal
BFS style ± for paths to sinks. A sink node has a ``distance'' from the source ac-
cording to the quality of the best path via which it has been reached during the BFS.
If a node is found again (due to circle closing edges), its ``distance'' is updated. The
algorithm visits each edge at most once and, thus, has a running time of O�m�. For

Table 4

Guided di�usion: mean values of AR using di�erent edge-weighting functions

Square Cooler Smiley Tower

Cu 1.351 1.289 1.387 1.341

Csrd 1.364 1.302 1.393 1.344

Ca 1.353 1.294 1.387 1.340

Crd � Ca 1.361 1.296 1.390 1.765

1574 R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581

each sink node, all the paths from the source found during the search are stored
together with their quality. The load wi ÿ �w of a source i is distributed (logically) to
its ``best'' sinks, each of them ®lling up to �w in order to build the (source/sink/
amount) triples. The time for this phase is dominated by the search. As there are at
most n sources, the total running time is O�n � m�.

The second phase routes the ¯ow demands between source/sink pairs via paths in
the network. The task here is to distribute the ¯ow evenly among (a subset of)
possible paths from the source to the sink. The ®rst phase has already calculated
possible paths. If a ¯ow of xst has to be shifted from a source s to a sink t and if there
are two possible paths p1 and p2 between them, the fraction of q�p1�=�q�p1� � q�p2��
will be shifted via p1. The rest will be shifted via p2.

Table 5 shows a comparison of AWF and Di�usion. Again, several di�erent
functions for rating element are chosen to guide the migration. The values in Table 5
are mean values of all results for a given problem and a given ¯ow algorithm and
edge weighting function. It can be observed that an improvement in the achievable
AR of around 5% is possible by weighting the edges properly (Cu is again the non-
weighted case). AWF behaves generally better than Di�usion. Sometime the im-
provements are large (�25%), in most cases they are around 5%. Csrd turns out to be
a good edge weighting function, and also the use of Ca sometimes improves the
situation.

4.3. Results

Figs. 12 and 13 present the development of AR, cut and number of iterations of
the DD-PCG solver over a number of re®nement levels of the Domain ``Square''
(Fig. 1) re®ned in a number of steps from 736 to 15421 elements. Experiments using
regular meshes and regular domains show an increase in the number of iterations by
one when the number of elements are doubled. For irregular meshes such as those
used here, one can not hope for such good convergence behavior. Fig. 12 displays the
behavior if Ccut is used as element rating function, Fig. 13 if Csrd � Ca is used. It can
be observed that the number of iterations will be very unstable and generally larger if
cut is the optimization goal. If the shape is optimized, the solver behaves much better.

Generally, AR expresses the development of the number of iterations much better
than Cut. We conclude from the experiments that an optimization according to AR
is reasonable.

Table 5

AWF in comparison to di�usion

Square Cooler Smiley Tower

Di� AWF Di� AWF Di� AWF Di� AWF

Cu 1.351 1.340 1.289 1.289 1.387 1.411 1.341 1.320

Csrd 1.364 1.320 1.302 1.289 1.393 1.340 1.344 1.311

Ca 1.353 1.344 1.294 1.296 1.387 1.368 1.340 1.336

Crd � Ca 1.361 1.328 1.296 1.289 1.390 1.374 1.765 1.300

R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581 1575

Fig. 14 (left) shows the results of the AR-optimization using Csrd as rating
function and AWF with Csrd � 0:2Ca � 1:2CB as balancing ¯ow calculation. In the
tests, the domain ``Smiley'' is re®ned in 6 steps from 2500 elements to 5000 ele-
ments using Rivara's re®nement algorithm [34]. For comparisons, the right picture
shows the same domain, re®ned in the same way, but now with Ccut as element

0

2

4

6

8

10

12

14

16

2 4 6 8 10 12

#Its/10
Cut/10

AR-Max
AR-Avg

Fig. 13. Development of AR, cut and # Iterations for domain ``square'' and increasing level of re®nment

with Csrd � Ca as element rating function.

Fig. 12. Development of AR, cut and # Iterations for domain ``square'' and increasing level of re®nment

with Ccut as element rating function.

1576 R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581

rating and standard Di�usion for balancing ¯ow calculation. The di�erences are
directly visible.

We compare the results of the AR-optimization in PadFEM with those of Jostle.
The element migration decision in Jostle uses Ccut as the rating function. Together
with a special border optimization based on KL and with sophisticated tie-breaking
methods, Jostle is able to generate and maintain well shaped partitions, even if the
AR is not directly considered.

Figs. 15 and 16 show the development of AR over typical runs of (solve/ re®ne/
balance . . .) for our four test examples. Fig. 15 shows the results if Jostle (without
multi-level coarsening-the Jostle-D con®guration described in [44]) is used as load
balancer. Fig. 16 gives the results if the AR-optimization of PadFEM is used (with

Fig. 14. Optimization according to AR (left) and cut (right).

Fig. 15. The development of the AR for increasing levels of re®nement with load balancer of Jostle.

R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581 1577

best possible parameter combinations). It can be observed that the AR is decreasing
with increasing numbers of elements if the PadFEM-balancer is used. The opposite is
true if Jostle determines the elements to be moved. This shows that our strategy can
operate as high-quality load balancer in adaptive environments maintaining well
shaped subdomains over a long period of time. Standard load balancers like Jostle
(and with Metis, it would be just the same) cannot directly be used over a longer
period without complete repartitionings from time to time. At least this is the case, if
the partition AR is a measure of importance.

To show that the results given in Fig. 15 and 16 are not special cases, Table 6
presents values of AR averaged over several steps of re®nements and di�erent pa-
rameter settings. The unweighted results (columns ``UW'') are just normal average
values, the others show ARs weighted with the number of elements of the individual
meshes. The idea behind this weighting is to increase the importance of ®ner meshes,
where the solvers take longer times and where it is much more important to achieve
good AR. The results show that PadFEM can improve the AR of mesh partitions by
around 10% over a state-of-the-art general purpose load balancing tool. This sort of
improvement is con®rmed in [42].

Fig. 16. The development of the AR for increasing levels of re®nement with AR-optimization of Pad-

FEM.

Table 6

Comparison, Jostle $ PadFEM

Jostle PadFEM

UW W UW W

Square 1.250 1.267 1.182 1.140

Cooler 1.230 1.245 1.238 1.229

Smiley 1.310 1.326 1.252 1.234

Tower 1.307 1.303 1.261 1.219

1578 R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581

5. Extensions to 3D and parallelism

All methods discussed have been applied to examples in 2D. The graph parti-
tioning algorithms either work on graph measures or on the Euclidean distance,
which can easily be extended to 3D. The balancing ¯ow calculation works only on
graph measures, so the dimension of the mesh does not play a role. Di�erencing
between the dimensions is a proper de®nition of AR. In 3D, borders change to
surfaces, areas to volumes and circles to spheres. The main consequence is an in-
crease in calculation time for the di�erent shape cost measures, but in principle, all
de®nitions can be extended easily.

We have not shown any quantitative results concerning run-times or parallel ef-
®ciencies. The main reason is the di�culty of getting complex applications such as
parallel adaptive numerical codes using DD-preconditioned CG solvers to run with
competitive performance. The balancing ¯ow calculation is parallel by de®nition and
can be calculated together with the CG solver iterations (for the AWF method,
parallelization turns out to be a lot more complex). Concerning the element mi-
gration it is necessary to ®nd independent sets of processor pairings to avoid con¯icts
during the data movement.

6. Conclusions

We have presented a two-step load balancing algorithm for adaptive mesh cal-
culations on distributed memory machines. Our new center-oriented method called
Bubble naturally produces very low AR and can successfully be used as a starting
point for a balancing strategy. The balancing algorithm is distributed and takes
existing partitions into account. The algorithm ®rst determines a balancing ¯ow and
then moves elements. The element migration is particularly designed to optimize the
AR of subdomains. Experiments which make use of a preconditioned Conjugate
Gradient solver based on Domain Decomposition and comparisons to existing
balancing tools show the bene®t of our approach.

References

[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows ± Theory, Algorithms, and Applications,

Prentice-Hall, Eaglewood, Cli�s, NJ, 1993.

[2] S.T. Barnard, H.D. Simon, Fast multilevel implementation of recursive spectral bisection for

partitioning unstructured problems, Concurrency: Practice and Experience 6 (2) (1994) 101±117.

[3] S. Blazy, W. Borchers, U. Dralle, Parallelization methods for a characteristic's pressure correction

scheme, in: E.H. Hirschel (Ed.), Flow Simulation with High-Performance Computers II Notes on

Numerical Fluid Mechanics, 1995.

[4] J.E. Boillat, Load balancing and poisson equation in a graph, Concurrency: Practice and Experience 2

(4) (1990) 289±313.

[5] J.H. Bramble, J.E. Pasciac, A.H. Schatz, The construction of preconditioners for elliptic problems by

substructuring i. and ii., Math. Comput. 47+49, (1986+1987).

R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581 1579

[6] T.N. Bui, S. Chaudhuri, F.T. Leighton, M. Sisper, Graph bisection algorithms with good average case

behaviour, Combinatorica 7 (2) (1987) 171±191.

[7] N. Chrisochoides, C.E. Houstis, E.N. Houstis, S.K. Kortesis, J.R. Rice, Automatic load balanced

partitioning strategies for PDE computations, in: Proceedings of the ACM International Conference

on Supercomputing, 1989, pp. 99±107.

[8] G. Cybenko, Load balancing for distributed memory multiprocessors, J. Par. Distr. Comput. 7 (1989)

279±301.

[9] R. Diekmann, U. Dralle, F. Neugebauer, T. R�omke. Padfem: A portable parallel FEM-tool, in:

HPCN, LNCS 1067, 1996, pp. 580±585.

[10] R. Diekmann, A. Frommer, B. Monien, E�cient schemes for nearest neighbor load balancing, in: G.

Bilardi et al., (Ed.), 6th European Symposium an Algorithms (ESA'98), LNCS 1461, 1998,

pp. 429±440.

[11] R. Diekmann, D. Meyer, B. Monien, Parallel decomposition of unstructured FEM-meshes,

Concurrency: Practice and Experience 10 (1) (1998) 53±72.

[12] R. Diekmann, B. Monien, R. Preis, Using helpful sets to improve graph bisections, in: Hsu et al.

(Ed.), Interconnection Networks and Mapping and Scheduling Parallel Computations, DIMACS

Disc. Math. Theory Com. Sci. 21 (1995) 57±73AMS.

[13] R. Diekmann, S. Muthukrishnan, M.V. Nayakkankuppam, Engineering di�usive load balancing

algorithms using experiments, In: G. Bilardi et al. (Ed.), IRREGULAR'97, LNCS 1253, 1997,

pp. 111±122.

[14] C. Farhat, A simple and e�cient automatic FEM domain decomposer, Computers and Structures 28

(5) (1988) 579±602.

[15] C. Farhat, S. Lanteri, H.D. Simon, Top/domdec ± a software tool for mesh partitioning and parallel

processing, J. Comput. Syst. Engrg. 6 (1) (1995) 13±26.

[16] C. Farhat, N. Maman, G. Brown, Mesh partitioning for implicit computations via iterative domain

decomposition: Impact and optimization of the subdomain aspect ratio, Int. J. Numer. Methods

Engrg. 38 (1995) 989±1000.

[17] C.M. Fiduccia, R.M. Mattheyses, A linear-time heuristic for improving network partitions, in:

Proceedings of the 19th IEEE Design Automation Conference, 1982, pp. 175±181.

[18] M.R. Garey, D.S. Johnson, Computers and Intractability, W.H. Freeman, San Francisco, 1979.

[19] B. Ghosh, S. Muthukrishnan, M.H. Schultz, First and second order di�usive methods for rapid,

coarse, distributed load balancing, In: Proc. ACM-SPAA'96, 1996, pp. 72±81.

[20] T. Goehring, Y. Saad. Heuristic algorithms for automatic graph partitioning, Technical Report

UMSI 94-29, University of Minnesota Supercomputer Institute, 1994.

[21] B. Hendrickson, R. Leland, The Chaco user's guide: Version 2.0. Technical Report SAND94-2692,

SNL, Albuquerque, NM, Oct 1994.

[22] B. Hendrickson, R. Leland, An improved spectral graph partitioning algorithm for mapping parallel

computations, SIAM J. Sci. Comput. 16 (2) (1995) 452±469.

[23] B. Hendrickson, R. Leland, A multilevel algorithm for partitioning graphs, in: Proc. Supercomputing

'95. ACM, Dec 1995.

[24] Y.F. Hu, R.J. Blake, D.R. Emerson, An optimal migration algorithm for dynamic load balancing,

Concurrency: Practice and Experience 10 (6) (1998) 467±483.

[25] D.S. Johnson, C.R. Aragon, L.A. McGeoch, C. Schevon, Optimization by simulated annealing: An

experimental evaluation; part 1, graph partitioning, Operations Research 37 (6) (1989) 865±893.

[26] M.T. Jones, P.E. Plassmann, Parallel algorithms for adaptive mesh re®nement, SIAM J. Sci. Comput.

18 (1997) 686±708.

[27] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs,

Technical Report 95-035, CS Dept., University of Minnesota, 1995 (to appear in SIAM J. Sci.

Comput.).

[28] B.W. Kernighan, S. Lin, An e�ective heuristic procedure for partitioning graphs, The Bell Syst. Tech.

J. Feb 1970, 291±308.

[29] Y. Linde, A. Buzo, R.M. Gray, An algorithm for vector quantizer design, IEEE Trans.

Communications COM-28 (1980) 84±95.

1580 R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581

[30] L. Oliker, R. Biswas, Plum: Parallel load balancing for adaptive unstructured meshes, J. Par. Dist.

Comput. 52 (2) (1998) 150±177.

[31] F. Pellegrini, J. Roman, Scotch: A software package for static mapping by dual recursive

bipartitioning of process and architecture graphs, in: HPCN, Apr 1996, pp. 493±498.

[32] A. Pothen, H.D. Simon, K.P. Liu, Partitioning sparse matrices with eigenvectors of graphs, SIAM

J. Matrix Anal. Appl. 11 (3) (1990) 430±452.

[33] R. Preis and R. Diekmann, Party ± a software library for graph partitioning, in: B.H.V. Topping

(Ed.), Advances in Computational Mechanics with Parallel and Distributed Processing, 1997, pp. 63±

71.

[34] M.-C. Rivara, Mesh re®nement processes based on the generalized bisection of simplices, SIAM

J. Numer. Anal. 21 (3) (1984) 604±613.

[35] Youcef Saad, Iterative Methods for Sparse Linear Systems. PWS Publ. Co., 1996.

[36] Frank Schlimbach, Load-Balancing Heuristics optimising Subdomain Aspect Ratios for Adaptive

Finite Element Simulations, Ph.D. Thesis, School of Computing and Math. Sciences, The University

of Greenwich, London, 1999.

[37] K. Schloegel, G. Karypis, V. Kumar, Multilevel di�usion schemes for repartitioning of adaptive

meshes, J. Par. Dist. Comput. 47(2) (1997) 109±124.

[38] H.D. Simon, Partitioning of unstructured problems for parallel processing, Comput. Syst. Engrg. 2

(1991) 135±148.

[39] D. Vanderstraeten, C. Farhat, P.S. Chen, R. Keunings, O. Zone, A retro®t based methodology for the

fast generation and optimization of large-scale mesh partitions: Beyond the minimum interface size

criterion, Comput. Meth. Appl. Mech. Engrg. 133 (1996) 25±45.

[40] D. Vanderstraeten, R. Keunings, C. Farhat, Beyond conventional mesh partitioning algorithms and

the minimum edge cut criterion: Impact on realistic applications, in: Sixth SIAM Conference on

Parallel Processing for Scienti®c Computing, 1995, pp. 611±614.

[41] R. Verf�urth, A Review of a posteriori Error Estimation and Adaptive Mesh-Re®nement, Wiley,

Chichester, 1996.

[42] C. Walshaw, M. Cross, R. Diekmann, F. Schlimbach, Multilevel mesh partitioning for optimising

domain shape. Tech. Rep. 98/IM/38, Univ. Greenwich, London SE18 6PF, UK, July 1998 (to appear

in Int. J. High Performance Comput. Appl.).

[43] C. Walshaw, M. Cross, M.G. Everett, A localised algorithm for optimising unstructured mesh

partitions, Int. J. Supercomput. Appl. 9 (4) (1995) 280±295.

[44] C. Walshaw, M. Cross, M.G. Everet, Parallel dynamic graph partitioning for adaptive unstructured

meshes, J. Par. Dist. Comput. 47 (2) (1997) 102±108.

[45] O.C. Zienkiewicz, The Finite Element Method, McGraw-Hill, New York, 1989.

R. Diekmann et al. / Parallel Computing 26 (2000) 1555±1581 1581

