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Abstract - This paper presents two multilevel refinement 
algorithms for the capacitated clustering problem. 
Multilevel refinement is a collaborative technique capable 
of significantly aiding the solution process for optimisation 
problems. The central methodologies of the technique are 
filtering solutions from the search space and reducing the 
level of problem detail to be considered at each level of the 
solution process. The first multilevel algorithm uses a 
simple tabu search while the other executes a standard 
local search procedure. Both algorithms demonstrate that 
the multilevel technique is capable of aiding the solution 
process for this combinatorial optimisation problem. 

Keywords: Multilevel refinement, Clustering, Tabu search, 
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1 Introduction 
   The field of location science addresses the problem of 
how to optimally locate resources. Important applications of 
location analysis are found in the fields of data mining [34] 
and clustering [26], [13]. Data clustering is a technique 
central to pattern recognition [20] and knowledge discovery 
[29] among others. It is concerned with the partitioning of n 
data points in m-dimensional space into k clusters, to 
maximise similarities between data of the same cluster. This 
conforms to the model of various location problems for 
example, the p-median problem. 
 The p-median problem [10], [11] is known to be NP-
Hard [15]. The problem models locating p medians on a 
network of n nodes while attempting to minimize the total 
cost of connections between medians and nodes. The 
capacitated clustering problem, also frequently referred to in 
the literature as the capacitated p-Median problem (CPMP) 
[19], [2], has direct applications in vehicle routing [6], [16] 
and communication network design [23] among others. The 
clustering aspect has applications in fields as diverse as 
biology and economics [22]. The problem extends the p-
median problem with the addition of capacity constraints 
[12] and in the case of fixed medians, it reduces to the 
generalised assignment problem [27], [25], [33], [14] and is 
known to be NP complete [9]. The aim of the CPMP is to 
partition n demand nodes into p disjoint clusters such that a 
maximum capacity constraint imposed for a cluster is not 
exceeded and the total cost is minimised. A formal 
representation of the CPMP is provided by Fleszar and 
Hindi [7] and the problem continues to be an area of active 
research [1], [7], [27]. 

1.1 Multilevel technique 
 The multilevel technique encompasses three phases: 
coarsening, extension and refinement. The technique uses 
recursive coarsening to create a hierarchy of approximations 
to a given problem. In many cases, since the problem is 
coarsened to the maximum point allowed by the problem 
constraints, the coarsest approximation can then be used as 
an initial solution, which is repeatedly extended  (coarsest to 
finest) and iteratively refined, generating a final solution 
[31].  
 If the coarsening process is exact [32], a feasible 
solution exists at each level. Additionally, individual moves 
implemented on the coarsened problem in the refinement 
phase typically correspond to larger moves around the 
solutions space than individual moves implemented on an 
uncoarsened problem. By this process, the multilevel 
algorithm is able to quickly get to the detailed problem in 
the lower levels with a high quality solution in place. The 
hierarchical view of the problem taken by the multilevel 
algorithm imparts a more global view than can be seen by 
local search heuristics acting alone [31]. 
 The multilevel technique has been successfully applied 
across a wide range of problem domains [30]. The recent 
review by Walshaw [32] provides comprehensive analysis 
of numerous such instances. These include the application 
of the multilevel technique to: graph colouring [31], 
covering design [4], biomedical feature selection [21], 
capacitated multicommodity network design [3], the graph 
partitioning problem [9] and the traveling salesman problem 
[28]. Further, the recent application of the technique to the 
vehicle routing problem has produced encouraging results 
[24]. Generic multilevel and single-level algorithms are 
shown in the figure 1. The call to refine in these algorithms 
executes the refinement algorithms of figure 4, section 3.4.   
 There exist a number of enhancements for the 
multilevel technique. These enhancements can be 
incorporated into the multilevel framework to improve 
performance [32]. Solution-based recoarsening [32], one of 
the more powerful enhancements, allows for the coarsening 
of a solution to a given problem. Restrictions are placed on 
the coarsening process, ensuring that the desirable features 
of the solution are still present after it is re-coarsened. In the 
case of a clustering solution, coarsening is applied to nodes 
belonging to the same cluster. The refinement algorithm in 
place then treats the re-coarsened solution as an initial 
solution and searches for further improvements and this 
forms the basis of iterated multilevel algorithms [31]. 
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Figure 1: Generic multilevel and single-level algorithms. 
 

2 Multilevel technique for the CPMP 
 The multilevel technique applied to the CPMP attempts 

to aid the solution process by filtering solutions from the 
search space at each level and reducing the amount of detail 
at each level. The technique has found success in filtering 
solutions from the search space and this is reflected in the 
plot of figure 3. It can be seen from this figure that the 
technique is capable of obtaining improvements to the 
solution cost in the upper levels of the refinement process, 
when the solution is in a coarsened state and the number of 
possible solutions are restricted.  

The following points can be made about the application 
of the multilevel technique to the CPMP.  

• Search space filtering: As the problem is coarsened at 
each level, the number of nodes in the solution is 
reduced. Medians can only be located at the node 
locations present at any given level when the levels are 
revisited in the refinement phase. By this process, the 
technique filters solutions from the search space: The 
means by which the multilevel technique makes its main 
impact for the CPMP.  

• Reducing the level of detail available at each level: 
While the multilevel technique approximates the 
solution space (reducing the number of possible median 
locations), the technique does not approximate the 
problem space i.e. cost calculations are done on actual 
node locations to produce accurate solutions at each 
level. Preliminary tests were done for the CPMP using 
approximate cost calculations, thus allowing more detail 
to be filtered from the problem. However, these results 
were not encouraging.  

• Impact of the node and edge weights during the 
coarsening process: The data for the CPMP can be 
represented by a weighted graph and the solution seeks 
to minimise the sum of the edges connecting the nodes 
to their medians. Construction heuristics typically 
evaluate decisions based on edge weights as opposed to 
the weight of the nodes. However as the CPMP is 
capacitated and the number of medians is 
predetermined, when constructing a solution, node 
weights have to be actively considered in order to 
produce a feasible solution. This is especially true for an 
agglomerative process like the multilevel technique’s 
coarsening phase, since as the nodes are coarsened 
feasibility becomes more difficult to guarantee.  
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Figure 3: The change in the quality of solution throughout 
the refinement process as the multilevel technique is applied 
to instance 1 of the OC instances [22]. Refinement done to 
reduce the cost to approximately 1.04 above the optimal 
values is done in the upper levels of refinement. This 
corresponds to the refinement done within the first 30s of 
the solution process. 

3 Multilevel algorithm for the CPMP 
 At each level, the coarsening algorithm iteratively 
merges node locations to form partial cluster segments, 
simplifying the problem. The refinement process then 
extends and refines the initial solution, created at the end of 
coarsening, until an optimised solution to the original 
problem is obtained.  
 We define a segment as a section of a cluster having a 
cost, a demand, and a location (represented by x, y 
coordinates). At level zero, a segment represents a single 
node. A segment in the upper level is created by merging a 
pair of existing segments. The new segment represents its 
constituting segments as a single location. When two 
segments are merged, one of these segments’ locations is 
randomly chosen as the location of the new segment. By 
using one of the original segments’ locations, the heuristic 
ensures that the search for median locations in the 



refinement stage occurs at locations corresponding to node 
locations in the original problem. The cost of an upper level 
segment is equivalent to the cost of connecting all its 
constituting segments to the location assigned to the upper 
level segment and its demand is equal to the total demand of 
all its constituting segments. 
 Two types of coarsening are implemented for the 
CPMP. The first type uses coarsening to construct the initial 
solution, while the second type uses a two-phase coarsening 
approach. 

3.1 Coarsening used to create the initial 
solution for the CPMP 

 At each level, segments are matched in pairs by the 
coarsening algorithm and a new segment created which 
replaces each pair of matched segments. This continues 
while there are pairs of unmatched segments at the current 
level that can be used to create a new segment that respects 
the constraints. The new segments plus segments that could 
not be matched are included in the next level and the 
process repeated, until the problem is represented by p 
segments. This stopping condition is chosen, since p 
clusters are required to be served by p medians with each 
median belonging to exactly one cluster.  
 Because the problem is capacity constrained and the 
number of medians is predetermined, the segments are 
ordered by demand at each level and merged in pairs by 
decreasing demands. The solution produced by this heuristic 
may be an infeasible one, i.e. there may exist more than p 
medians. In this case, feasibility is enforced during the 
refinement phases using the inter cluster heuristic. However, 
merging the segments based on demand as opposed to cost 
reduces the possibilities of constructing infeasible solutions. 
 
3.2 Two-phase coarsening for the CPMP 
 The two-phase coarsening process constructs a 
feasible initial solution and then coarsens the solution while 
respecting the clusters i.e. all segments produced belong 
entirely to only one cluster. Two construction heuristics 
were implemented for the CPMP. The first, termed the 
grouping heuristic, is modelled on the three-phase heuristic 
proposed by Osman and Christofides [22] and modified by 
Franca et al. [8].  
 The heuristic commences by selecting two initial 
median locations, these being the locations of the two nodes 
farthest apart. If the number of medians p is equal to two, 
the heuristic terminates. If, however p is greater that two, 
additional medians are chosen until p-1 medians are 
obtained, such that each new median maximizes the product 
of the distances between itself and all previously located 
medians. The last median is chosen, satisfying p, such that 
the distance between itself and all previously located 
medians is minimised. 
 In the second phase, the nodes are assigned to medians 
in increasing order of a calculated quotient, while the 

capacity constraints can be respected. The quotients are 
calculated by dividing the distance between each node and 
each median, by the node’s demand. The third phase 
recalculates the median of each cluster at the end of all 
assignments. If a new set of medians is found, they become 
the initial medians, and the second and third phase are 
repeated until a stable set of medians emerges.  
 The second construction heuristic implemented, 
termed the greedy heuristic, selects p initial medians 
randomly, as done by Mulvey and Beck [19]. The nodes are 
assigned by increasing cost from their nearest available 
median, as done by Osman and Christofides [22]. However, 
after each insertion the median locations are updated for the 
affected cluster. The heuristics are modified to handle 
capacity overflows.  

3.2.1 Coarsening the clusters 
  Coarsening is applied to each cluster in the solution in 
turn, calculating the cost between all unique pairs of 
segments in the cluster. The segments are merged in pairs 
starting with the two closest segments, then the next pair of 
closet segments and so on while there are pairs of unmerged 
segments at the current level. Segments are merged once at 
a given level. The new segments are then included in the 
next level along with any unmerged segment and the 
process repeated until the cluster is represented by one 
segment.   

3.3 CPMP local search procedure - Simple 
segment transfer 

 Simple segment transfer is an inter-cluster heuristic 
[22],[8] that defines two move types for generating 
neighbourhoods: transfer and interchange. Transfer moves 
consider the insertion of segment(s) from one cluster into 
another. Interchange moves consider the exchange of 
segment(s) between a pair of clusters. All segments in the 
clusters are considered for transfer or interchange and a 
parameter, λ, specifies how many segments can be removed 
or added to a cluster at once.   
 An arbitrary ordering is defined on all the clusters in a 
solution S, the heuristic then sequentially searches all pairs 
of clusters in S. The search is conducted first for improving 
interchange moves then repeated for improving transfer 
moves. A first improvement strategy is used. Since the 
heuristic searches the clusters in  pairs, the size of the search 
neighbourhood is determined by the number of clusters in S 
and the value of λ. Hence, typically λ equal to one is used to 
reduce the size of the search neighbourhood.  
 
3.4 Refinement strategies for the CPMP 
 Two refinement strategies are implemented for the 
CPMP. The first, termed simple search, outlined at the top 
of figure 4 iteratively expands and then refines the clusters 
at each level using the simple segment transfer heuristic. 
When an improving move is implemented, the affected 



clusters are optimised, determining the best median 
locations within those clusters. The second strategy guides 
the refinement process using a tabu search heuristic 

3.4.1 Tabu search refinement strategies 

 The multilevel algorithm using tabu search refinement 
is outlined in figure 4. Simple segment transfer is used to 
iteratively refine the solutions at each level, however a tabu 
search mechanism is added which allows the accepting of 
non-improving moves and the rejection of tabu-ed moves. 
This guides the refinement process to areas of the search 
space inaccessible to the simple search algorithm. The tabu 
search concepts of the algorithm of figure 4 are modelled on 
the work of France et al.[8] but the algorithm has been 
modified for the multilevel framework.  
 Synopsis of the tabu search mechanism: edges that are 
a part of moves implemented during the refinement phase 
are tabu-ed for a given number of iterations. The solution is 
then prevented from visiting solutions containing a given 
number of tabu-ed edges. An aspiration criterion  can be 
defined such that if a tabu-ed move identifies a solution 
better in quality than any previously obtained, the tabu state 
is ignored and the move implemented. If no improving 
move was found during the last iteration, the least non-
improving move is accepted. These non-improving moves 
are allowed for a stated number of iterations. 
 Analysis of the Tabu search mechanism: A transfer 
move involves two edges, while an interchange move 
involves four edges. At each level, a tabu range is defined, 
stating the lower and upper bounds for the number of 
iterations for which to tabu an attribute. The tabu range is 
calculated by dividing the number of segments at a level by 
four and two, giving the minimum and maximum values 
respectively. When a move is implemented, all the involved 
edges are tabu-ed and assigned a random value chosen 
between the tabu range. The tabu-ed edges record the 
segments that are transferred or interchanged. Where these 
segments are upper level segments, while the edges are 
tabu-ed and the segments have not been extended, the 
relevant moves are tabu-ed. Extending the segments 
however, means moves involving those segments are no 
longer tabu. Intensification and diversification of the search 
process is driven by: the tabu range, the acceptance of uphill 
and downhill moves and the controlling of when moves are 
tabu-ed. An integer tolerance parameter [8] is defined 
stating the maximum number of tabu-ed edges allowed in a 
move. Moves containing a number of tabu-ed edges 
exceeding this tolerance parameter value are disqualified.  
 At each level, the simple segments transfer heuristic, 
as used in the simple search algorithm, attempts to relocate 
each segment in the solution. Since there is no history of 
moves made at previous levels, computational resources 
could potentially be wasted. This can occur when expensive 
cost calculations are made in attempting to relocate two 
segments to the exact locations they exchanged as a part of 
an improving move for example. If the aspiration criterion is 

not implemented, the tabu search algorithm potentially 
reduces the waste of computational resources. This is due to 
the fact that computationally less expensive checks are 
made on the edges of proposed moves against those edges 
that have been tabu-ed. This procedure then identifies 
moves of the types described above. 
 
expand clusters
do
    simple segments transfers
   If  improvement compute median locations
while( improvement found)

 

 

set iteration counter x := 0
set maximum number of  iterations  tni := an integer value.
expand clusters
do
    do
        simple segments transfer 
        If  improvement found compute median locations
    w

 

hile( improvement found)
    store best solution found to date
    if( no improvement found) 
    accept least non improving move.
    compute median locations
   x := x + 1
while( x < tni)

 

Figure 4: Simple search followed by the tabu search 
refinement algorithm executed at each level for the CPMP 
 

4 Results for the CPMP 
 The algorithms for the CPMP have been implemented 
in Java and tested on a Pentium-4, 3GHz PC using a number 
of standard test instances from the literature. The Osman 
and Christofides (OC) instances [22], encompass two sets 
(A and B) of problems totalling 20 instances. Set A contains 
10 instances of sizes 50 nodes (n) and 5 medians (p), while 
set B contains 10 instances with n = 100 and p = 10. 
Maniezzo et al. [18] provided optimal solution values (opt) 
for these instances using a branch and bound algorithm. 
Tests are also performed on a set of larger instances (the 
San Jose dos Campos (SJC) instances [17]), that use data 
collected from the Brazilian city of San Jose dos Campos. 
This test suite consists of six instances of dimensions (n , p) 
equal to ( 100, 10), (200, 15), (300, 25), (300, 30), (402, 30) 



and (402, 40). Best-known values were produced by a 
hybrid scatter search [5]. 
 The λ-interchange parameter, λ = 1, is employed for all 
tests. When tabu search refinement is used, the following 
additional parameters are employed. The number of 
iterations for which to search for improving solutions (value 
set to 4), the tabu range ( at each level the range is given by 
the number of segments at that level divided by 2 and 4) and 
the tolerance parameter, set equal to 1 for transfers and 3 for 
interchanges. 
 
4.1 Construction and coarsening heuristics 

testing 
Three methods of coarsening were implemented for the 

CPMP. The pair of two-phase coarsening methods and the 
coarsening algorithm used to create the initial solution. 
These methods were experimentally evaluated for both tabu 
search and simple search algorithms. However, the tabu 
search values were more informative and outperformed the 
simple search values. The tabu search values are 
summarized in table 1 below. 

Two-phase coarsening with the greedy heuristic is 
advocated as the means of creating initial solutions for the 
CPMP multilevel algorithm. As can be seen from Table 1, it 
outperforms the other two-phase coarsening methods when 
viewed across both test suites. Where coarsening is used to 
create the initial solutions, at the end of coarsening, the 
average results are 190.46% above the optimal values for the 
OC instances, compared with 24.68 % and 25.45% for the 
pair of two-phase coarsening methods. The results produced 
at the end of the refinement phase are better than the best 
produced when the other coarsening methods were 
employed. These results are 2 % above the optimal values 
compared to 2.33% for the two-phase coarsening methods 
applied to the OC instances. However, the runtimes incurred 
by the heuristic to recover from these poor starting results 
are approximately 40% more than the runtimes experienced 
for the better starting results. The fact that the problem is 
capacity constrained and the number of medians 
predetermined means that using coarsening to create the 
initial solution is biased towards the demand considerations 
as opposed to the cost considerations. For this reason, this 
form of coarsening is not advocated for this problem. This 
point is further illustrated in the result section on the San dos 
Campos instances. 

 
Table 1: Results at the end of the solution process using tabu search refinement. Solution quality represented as  
averages across the test suite with respect to the optimal solution values (opt) or the best-known solutions values (bks). 
Method of Coarsening  ML  ‐ Quality  (%  above 

opt) OC instances 
ML  ‐  Quality  (%  above 
bks) SJC instances 

Two phase Coarsening ( Grouping heuristic)  2.33  7.13 
Two phase Coarsening (Greedy heuristic)  2.33  4.49 

Coarsening used to create the initial solution  2.00  4.05 

 
4.2 Refinement approaches applied to the OS 

instances 
 The simple search and tabu search multilevel and 
single-level algorithms performance are compared and the 
results displayed in Tables 2 and 3. Both sets of results 
show that irrespective of refinement type the multilevel 
algorithms outperform the single-level versions. The 
difference in performance of the algorithms is most 
pronounced when the simple search is used. In this case, the 
single-level results are 64% worse when compared to the 
multilevel’s. In the case of the tabu search, the single-level 
results are 40% worse when compared to the multilevel’s. 

The results also show that the tabu search algorithms 
outperform their equivalent simple search counterparts. The 
simple search multilevel algorithm returns results 21.89 % 
above the tabu search multilevel algorithm. 
 The iterated multilevel (It.ML) algorithm results are 
also presented in Tables 2 and 3. The It.ML algorithm 
consists of applying solution-based recoarsening using the 
coarsening algorithm of section 3.2.1 to the solutions 
initially produced by the multilevel algorithm. The new 
solutions were then refined using the refinement algorithms 
of section 3.4. This procedure was repeated for ten 
iterations. In the best case the It.ML algorithm, produced 
results 0.49% above the optimal values. 

 
Table 2: Results for the Osman and Christofides instances. The refinement phase uses the tabu search  
algorithm. Solution quality is represented as percentage of the solution cost above the optimal values. 
Instances  N  P  Quality (% above opt)  Average runtime (S) 
      SL  ML  It.ML  SL  ML  It.ML 
Set A  50  5  1.20  1.09  0.17  20.97  63.37  216.95 
Set B  100  10  5.32  3.57  0.81  136.20  295.34  1610.20 
Average   3.26  2.33  0.49  78.59  179.36  913.52 
 
 



 
Table 3: Results for the Osman and Christofides instances. The refinement phase uses the simple search  
algorithm. Solution quality is represented as percentage of the solution cost above the optimal values. 
Instanc
e 

N  P  Quality (% above opt)  Average runtime (S) 

      SL  ML  It.ML  SL  ML  It.ML 
Set A  50  5  3.55  1.43  1.29  6.53  11.71  29.83 
Set B  100  10  5.76  4.25  3.89  46.82  63.09  85.35 
Average   4.66  2.84  2.59  26.68  37.4   48.94 
 

4.3 Results for San Jose dos Campos city 
instances 

As shown in table 4, when the algorithms were applied to 
the larger instances, the multilevel algorithm outperformed 
the single-level algorithm by a factor of 1.72. This compares 
to the case of the smaller OC instances where the multilevel 
algorithm outperformed the single-level algorithm by a 
factor of 1.4.  

When two-phase coarsening was compared to the process 
of using coarsening to create the initial solutions for the OC 
instances, at the end of the refinement phase, the best results 
were found when coarsening was used to create the initial 
solutions. The investigation was extended to the San Jose  

dos Campos instances and a comparison presented in table 
5. When coarsening is used to create the initial solutions for 
the San Jose dos Campos instances, at the end of the 
solution process better results are obtained compared to the 
case where two-phase coarsening is used. However, the 
starting result produced using coarsening to create the initial 
solution was 392% above the bks at the end of coarsening. 
This resulted in the multilevel algorithm requiring 1345.59 
minutes to refine an average problem in the test suite. The 
solutions produced were an average 4.05 % above the bks; 
however, the iterated multilevel algorithm using two phase 
coarsening was able to produce superior results, 2.46 % 
above the bks in significantly less time, that of 655.58 
minutes (see Table 4). 
 

Table 4: Results for the San Jose dos Campos instances [18] using tabu search refinement. 
  Quality (% above bks)    Time (min) 
  SL  ML  It.ML    SL  ML  It.ML 
Average   7.73  4.49  2.46    93.79  216.09  655.58 

 
 
Table 5: Results for the San Jose dos Campos instances [18] using the tabu search multilevel algorithm.  
Method of creating initial solution  Quality (% above bks)  Time (min) 

Two phase Coarsening (Greedy heuristic)  4.49  216.09 
Coarsening used to create the initial solution  4.05  1345.59 

 

5 Conclusion 
 Multilevel refinement is able to significantly aid the 
performance of local search algorithms applied to the 
CPMP. Due to the capacitated nature of the problem and the 
fact that the number of medians is predetermined, the 
multilevel practitioner can benefit from separating the 
solution construction from the process of approximating the 
search space. This can be done using a two-phase 
coarsening process as presented in this paper. This can 
significantly reduce the runtime compared to the case where 
coarsening is used to construct the initial solutions, as it 
produces initial solutions of higher quality. A tabu search 
component to the multilevel refinement algorithm can 
further improve the solutions, and combined with solution-
based recoarsening, the technique is highly effective at 
producing solutions to the CPMP. 
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