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Abstract 

 

 

Graph partitioning divides a graph into several 
pieces by cutting edges. The graph partitioning 
problem is to divide so that the number of 
vertices in each piece is the same within some 
defined tolerance and the  number of cut edges 
separating these pieces is minimised. Important 
examples of  the problem arise in partitioning 
graphs known as meshes for the parallel 
execution of computational mechanics codes. 
Very effective heuristic algorithms have been 
developed for these meshes which run in real-
time, but it is unknown how good the partitions 
are since the problem is in general NP-complete. 
This paper reports an evolutionary search 
algorithm for finding benchmark partitions. A 
distinctive feature is the use of a multilevel 
heuristic algorithm to generate an effective 
linkage during crossover. 

1 INTRODUCTION 

The need for graph partitioning arises naturally in many 
applications. For example in finite element (FE) and finite 
volume (FV) computational mechanics (CM) codes 
meshes composed of elements such as triangles or 
tetrahedra are often better suited than regularly structured 
grids for representing completely general geometries and 
resolving wide variations in behaviour via variable mesh 
densities. Meanwhile, the modelling of complex 
behaviour patterns means that the problems are often too 
large to fit onto serial computers, either because of 
memory limitations or computational demands, or both. 
Distributing a graph (corresponding to the computational 
and communication requirements of the mesh) across a 
parallel computer so that the computational load is evenly 
balanced and the data locality maximised is known as 

graph partitioning. It is well known that this problem is 
NP-complete, so in recent years much attention has been 
focused on developing suitable heuristics, and a range of 
powerful methods have been devised, e.g [6,7,8]. Because 
of the NP-complete nature of the problem (i.e. an optimal 
solution cannot be found in polynomial time) it is 
impossible to know how good the results of such 
algorithms are. Nonetheless we report on a technique, 
combining an evolutionary search algorithm together with 
a multilevel graph partitioner, which has enabled us to 
find partitions considerably better than those that can be 
found by any of the public domain graph partitioning 
packages such as JOSTLE [10] and METIS [7]. We also 
do not claim this technique as a possible substitute for the 
aforementioned packages; the very long run times 
preclude such a possibility for the typical applications in 
which they are used. However we do consider it of 
interest to establish benchmark  partitions, and to describe 
the method of finding them. 

1.1 OVERVIEW 

In this paper we discuss a strategy for combining 
evolutionary search techniques with a standard graph 
partitioning method. A particularly popular and successful 
class of algorithms which address the graph partitioning 
problem are known as multilevel algorithms. They usually 
combine a graph contraction algorithm which creates a 
series of progressively smaller and coarser graphs 
together with a local optimisation method which, starting 
with the coarsest graph, refines the partition at each graph 
level. 

We employ the evolutionary search algorithm by 
constructing a population of variants of the original graph 
(differing from the original only by edge weighting) and 
then use this multilevel algorithm almost as a `black box' 
operator to determine their fitness by computing a 
partition of each which hopefully will also be a good 
partition of the original graph. The population evolves 
either by individual members mutating or by several 



members crossing with each other to generate a different 
(and hopefully fitter) child. 

We have conducted many experiments to test the 
technique and present some of the results including 
benchmarks of public domain partitioning packages, and 
tests for the effectiveness of the evolutionary search. The 
principal innovation described in this paper is the 
combination of evolutionary search techniques and a 
multilevel graph partitioner. 

2 MULTILEVEL GRAPH 

PARTITIONING 

In this section we discuss the graph partitioning problem 
and outline our multilevel algorithm known as JOSTLE, 
described in [10], for addressing it. 

Let G = G(V, E) be an undirected graph of vertices V, 
with edges E. Typically for graphs arising from FE or FV 
meshes the edges will model the data dependencies in the 
mesh and the graph vertices can either represent mesh 
nodes (the nodal graph), mesh elements (the dual graph), 
a combination of both (the full or combined graph) or 
some other special purpose representation. We assume 
that both vertices and edges can be weighted (with non-
negative integer values) and that |v| denotes the weight of 
a vertex v and similarly for edges and sets of vertices and 
edges (although it is often the case that vertices and edges 
are given unit weights, |v|=1 for all v in V and |e|=1 for all 
e in E and indeed this is true for all of our test examples). 
Given that the mesh needs to be distributed to P 
processors, a partition is defined to be a mapping of V 
onto P disjoint subdomains.  

The definition of the graph partitioning problem is to find 
a partition which evenly balances the load or vertex 
weight in each subdomain whilst minimising the 
communications cost. To evenly balance the load, the 
optimal subdomain weight is the smallest integer greater 
than |V|/P and the imbalance is then defined as the 
maximum subdomain weight divided by the optimal. 
(since the computational speed of the underlying 
application is determined by the most heavily weighted 
processor). It is normal practice in graph partitioning to 
approximate the communications cost by the weight of 
cut edges and the usual (although not universal) definition 
of the graph partitioning problem is therefore to find a 
partition such that the imbalance is unity and such that the 
number of cut edges |Ec| is minimised. Our experiments 
will use an imbalance of 1.03 (or 3%), since this is 
considered acceptable for mesh partitioning and JOSTLE 
performs well at this tolerance. 

2.1 THE MULTILEVEL PARADIGM 

In recent years it has been recognised that an effective 
way of both speeding up graph partitioning techniques 
and/or, perhaps more importantly, giving them a global 
perspective is to use multilevel techniques. The idea is to 
match pairs of vertices to form clusters, use the clusters to 

define a new graph and recursively iterate this procedure 
until the graph size falls below some threshold. The 
coarsest graph is then partitioned (possibly with a crude 
algorithm) and the partition is successively optimised on 
all the graphs starting with the coarsest and ending with 
the original. This sequence of contraction followed by 
repeated expansion/optimisation loops is known as the 
multilevel paradigm and has been successfully developed 
as a strategy for overcoming the localised nature of the 
Kernighan-Lin (KL) [9], and other optimisation 
algorithms. 

The multilevel idea was first proposed by Barnard & 
Simon [1], as a method of speeding up spectral bisection 
and improved by both Hendrickson & Leland [5] and Bui 
& Jones [2], who generalised it to encompass local 
refinement algorithms. Several algorithms for carrying 
out the matching have been devised by Karypis & Kumar 
[7], while Walshaw & Cross describe a method for 
utilising imbalance in the coarsest graphs to enhance the 
final partition quality [10]. 

Graph Contraction 

To create a coarser graph Gl+1(Vl+1, El+1) from Gl(Vl , El) 
we use a variant of the edge contraction algorithm 
proposed by Hendrickson & Leland [5]. The idea is to 
find a maximal independent subset of graph edges, or a 
matching of vertices, and then collapse them. The set is 
independent if no two edges in the set are incident on the 
same vertex (so no two edges in the set are adjacent), and 
maximal if no more edges can be added to the set without 
breaking the independence criterion. 

Having found such a set, each selected edge is collapsed 
and the vertices, u1 , u2 in Vl say, at either end of it are 
merged to form a new vertex v in Vl+1 with weight |v| = 
|u1| + |u2|. A simple way to construct a maximal 
independent subset of edges is to create a randomly 
ordered list of the vertices and visit them in turn, 
matching each unmatched vertex with an unmatched 
neighbouring vertex (or with itself if no unmatched 
neighbours exist). Matched vertices are removed from the 
list 

The Initial Partition 

Having constructed the series of graphs until the number 
of vertices in the coarsest graph is smaller than some 
threshold, the normal practice of the multilevel strategy is 
to carry out an initial partition. 

Here, following the idea of Gupta [4], we contract until 
the number of vertices in the coarsest graph is the same as 
the number of subdomains P, and then simply assign 
vertex i to subdomain Si then commence on the 
expansion/optimisation sequence. 

Partition Expansion 

Having optimised the partition on a graph Gl, the partition 
must be interpolated onto  its parent Gl-1. The 



interpolation itself is a trivial matter; if a vertex v in Vl is 
in subdomain Sp then the matched pair of vertices that it 
represents, v1, v2 in Vl-1, will be in Sp. 

2.2 THE ITERATIVE OPTIMISATION 

ALGORITHM 

The iterative optimisation algorithm that we use at each 
graph level is a variant of the Kernighan-Lin (KL) 
bisection optimisation algorithm which includes a local 
search mechanism to enable it to escape from local 
minima, with respect to the number of cut edges and 
single vertex migrations between subdomains. 

Our implementation uses bucket sorting, the linear time 
complexity improvement of Fiduccia & Mattheyses [3], 
and is a partition optimisation formulation; in other words 
it optimises a partition of P subdomains rather than a 
bisection. 

The algorithm, as is typical for KL type algorithms, has 
inner and outer iterative loops with the outer loop 
terminating when no migration takes place during an 
inner loop.  The inner loop proceeds by examining 
candidate vertices, highest gain (improvement in cut-
weight) first, testing whether the vertex is acceptable for 
migration  (according to imbalance and gain criteria). The 
algorithm also uses a KL type hill-climbing strategy; in 
other words vertex migration from subdomain to 
subdomain can be accepted even if it degrades the 
partition quality and later, based on the subsequent 
evolution of the partition, either rejected or confirmed. 
The algorithm, together with conditions for vertex 
migration acceptance and confirmation is fully described 
in [10]. 

3 COMBINING EVOLUTIONARY 

SEARCH WITH THE MULTILEVEL 

GRAPH PARTITIONER 

Evolutionary search is a stochastic search technique that 
generates new points (or individuals which in our case are 
partitions) in a search space using information from a 
finite population of already evaluated points. Typically a 
new population is generated of equal size to the current 
population, which in turn provides the basis for producing 
a further population (termed a generation) and so on. This 
process is given direction by selecting more information 
from the fitter individuals in the current population when 
producing new search points [11]; partition fitness taking 
account of the number of cut edges and the imbalance. 

Each new search point is produced by one of two 
operations: crossover which combines information from 
more than one individual in the current generation in 
random fashion, and mutation which randomly modifies a 
single individual. The construction of successful 
crossover and mutation operators is problem specific and 
often complex, especially where individuals are subject to 
constraints as are the partitions, so that information from 
different individuals cannot be arbitrarily combined or 

modified. Further, the information needs to be effectively 
exploited so that new individuals result that are fitter than 
the current best individuals with sufficient probablility 
even when the current generation is already very good 
[12]. 

Evolutionary search algorithms have recently been 
successfully applied to a diverse set of problems 
providing useful examples of crossover and mutation 
operators which provide a guide for developing such 
operators for new problems. The operators described in 
this paper extend an approach to the Travelling Salesman 
Problem (TSP) [14] and the Constrained Minimum 
Spanning Tree Problem (CMSTP) [15], both of which 
require a search for a set of links satisfying constraints 
(forming a tour for the TSP) and for which the sum of 
their costs is a minimum. Clearly the graph partitioning 
problem is of similar character: find a set of links (cut 
edges) subject to the constraint that they generate a 
partition with acceptable imbalance and that the sum of 
their (edge) weights, which are all unity, is a minimum. 

The approach normally works by first defining a 
parametric representation for candidate tours (or CMSTs), 
upon which the many crossover and mutation operators 
available for parametric problems can then act [11]. The 
parametric representations are produced by “biasing” the 
link costs, ie adding spurious positive values to the cost of 
each link, and then applying a particular heuristic 
algorithm to produce the corresponding tour or CMST. 
The heuristic algorithm used should give good solutions 
for a large range of different problems (sets of link costs). 
We use biased edge weights to alter the output of the 
heuristic algorithm used here, JOSTLE, but form our 
genetic operators differently. 

3.1 INTERACTION WITH THE MULTILEVEL 

PARTITIONER 

We first describe how JOSTLE responds to a graph with 
biased edge weights. In fact each vertex is assigned a bias 
greater than or equal to zero, and each edge a dependent 
weight of unity plus the sum of the biases of its end 
vertices. JOSTLE responds to these edge weights so that: 

a) When contracting a graph, highest weight edges are 
collapsed first (subject to their being independent). 

b) When performing iterative optimisation, vertex gains 
are calculated using the biased edge weights. 

When applying JOSTLE to a graph with biased edge 
weights, the general effect will be that vertices with a 
small bias are more likely to appear at  the boundary of a 
subdomain than those with a large one, and that edges 
with lower biased weight are more likely to become cut 
edges than those with higher weight. 

It is easy to see for simple small meshes, simulating 
JOSTLE by hand, that particular partitions are achievable 
by choosing appropriate biases. However, we choose not 
to use the vertex biases as a representation for generating 
all partitions. Such a representation would have very high 



redundancy and would for the most part produce many 
partitions of low quality and hence  little interest. Instead, 
for each offspring we explicitly construct a new set of 
biases, and hence a new partition, from one or more 
existing parent partitions. The bias values are chosen 
carefully so that JOSTLE’s ability to produce partitions of 
good quality (with respect to the unweighted graph) is not 
too much impaired, while at the same time there is 
information transfer from the parents to the offspring. 

Since the bias values are discarded after a new offspring 
has been produced, the evolutionary search algorithm 
described here is not a traditional genetic algorithm since 
no representation (or genotype) is maintained, distinct 
from an actual partition.  

3.2 CROSSOVER OPERATOR 

We create a new set of biases from a selected number of 
parent partitions as follows: 

For each vertex in the graph, examine whether in two or 
more of the parent partitions that vertex is a border vertex 
(ends a cut edge). If so, assign the vertex a bias value 
chosen randomly and uniformly from the range [0, 0.01]. 
Otherwise assign a bias value of 0.1 plus a random 
number chosen in the same range. 

Border vertices will occur in two or more parents if either 
identical or adjacent cut edges also occur. Either way we 
take this as evidence that the vertex should remain as a 
border one in the child - under the assumption that the 
presence of this particular border vertex is a contributing 
factor to the fitness of two or more fit parents. Hence a 
very small bias is assigned. 

We make all other vertices less likely to become border 
vertices by assigning them a larger bias value. Since in 
both cases the bias value is small - much less than the unit 
weight of an edge - JOSTLE will produce a partition for 
the most part optimised with respect to the true edge 
weights. Hence the requirement of transfer of information 
to a partition of high quality can occur as required for a 
successful crossover operator. 

Adding a constant to all bias values will have no affect on 
the partition produced.  When considering their effect on 
graph contraction; only the relative ordering of the 
vertices by their biases and the edges at a vertex by their 
weights matters. However their relative size (over and 
above the effect on ordering) does alter what happens 
during the optimisation stage since the transfer of vertices 
between partitions may proceed so as to decrease the sum 
of biased edge weights, but increase the true total edge 
weight and hence cut edges. The greater the relative bias 
towards border vertices remaining so in the offspring, the 
greater the number that will be preserved on average, but 
at the cost of the offspring being more likely of poorer 
quality. The choice of a relative bias of 0.1 towards 
preserving border nodes is a value that has been shown by 
the experiments performed to give the right tradeoff 
between these competing effects. Informally we are 
relying on JOSTLE to preserve common border vertices 

from different pairs of partitions that can be “joined up” 
so as to produce a partition of high quality within the 
imbalance constraint, in effect finding an appropriate 
linkage [11]. 

At each mating, two, three or four mates were randomly 
chosen to crossover together, a range found to work well 
in trials on a number of graphs. 

3.3 MUTATION OPERATOR 

We create a new set of biases from a parent partition as 
follows: 

For each vertex in the graph examine whether it is a 
border vertex, the neighbour of a border vertex or the 
neighbour of a neighbour of a border vertex. If so, assign 
the vertex a bias value chosen randomly and uniformly 
from the range [0, 0.01]. Otherwise assign a bias value of 
2.0 plus a random number chosen in the same range. 

Considering the vertex biases as forming a landscape over 
the graph, the bias at any vertex giving its height, the 
effect will be a deep, flat-bottomed trench along the 
partition boundaries. The trench is considered deep since 
edge weights within the trench will be 4.0 different from 
those outside, so that JOSTLE’s optimisation stage will 
have a strong tendency to place boundaries within the 
trench. 

Motivations for this arrangement are the following: 

a) Since the edge weight biases within the trenches are 
small compared with unity, the true edge weight, JOSTLE 
can still successfully optimise within the trenches with 
respect to the true total edge weight. 

b) Unstructured meshes often show considerable 
regularity, especially locally in the form of translational 
symmetry, so that good quality partition boundaries are 
often found, nearby and locally parallel to each other. 
Hence a good place to look for another partition given an 
existing partition of good quality is within its trenches. 

c)  It should be possible to find new partitions mainly 
within the trenches, that satisfy the balance constraint, 
since there is freedom for all subdomains to gain and lose 
similar numbers of nodes when boundaries are shifted to 
mainly parallel positions. Here we need to take into 
account that the width of a trench spans three edges and 
so allows some boundaries to move more than others. 
Clearly the extent to which this will hold depends on the 
graph structure and the number of subdomains and their 
shape.  

d) The trenches allow variations orthogonal to the 
optimisations performed by JOSTLE ie there exist 
partitions for the most part lying in the trenches that will 
result from applying JOSTLE to bias values differing in 
their random parts only. This is because JOSTLE only 
considers the transfer of a limited number of vertices at a 
time between subdomains at any optimisation step. The 
movements of subdomain boundaries to adjacent parallel 



positions will in general require the transfer of larger 
numbers of vertices than JOSTLE allows. 

Properties a) – d) taken together are desirable properties 
for a mutation operator since they should lead to the 
generation of “nearby” partitions of similar, and hence 
sometimes superior quality. 

The choice of the value 2.0 to bias JOSTLE towards 
placing subdomain boundaries in the trench is again a 
compromise figure. A larger value on average places 
more border vertices in the trench but at a cost of poorer 
quality partitions. Again this value was chosen by 
experimenting with a number of different graphs.  

3.4 FITNESS FUNCTION AND IMBALANCE 

The fitness of a partition (to be maximised) was defined 
to be minus the number of cut edges times the imbalance. 
The imbalance was included in the fitness measure 
because the population of partitions can occasionally 
include individual partitions of greater imbalance than 
that sought, if JOSTLE fails to satisfy the constaint. This 
can occur because of a limit on the number of calls to the 
load-balancer which is hard coded to prevent cyclic 
behaviour in controlling the two minimisation variables, 
the cut-weight and the maximum subdomain size. 
However, the code rarely reaches this limit and (except if 
the imbalance is set to zero) JOSTLE usually achieves the 
required balance. 

The fitness function imposes a soft, but heavy penalty on 
partitions with greater imbalance; sufficiently heavy so 
that partitions within the balance constraint eventually 
dominated the population as evolution progressed. The 
required imbalance is an input parameter to JOSTLE and 
was set at 3%. 

3.5 GENETIC ALGORITHM PARAMETERS 

Due to the size of the meshes and the time required to 
execute JOSTLE, a fairly small population size of 50 was 
used. Small population sizes have been used successfully 
when hill climbing is effective, and experiments with the 
mutation operator indicated that this was so. 

A new generation was produced as follows: 50 new 
offspring were produced by either crossover or mutation 
at a ratio of 7::3. Mating groups of individuals for 
crossover and candidates for mutation were selected 
randomly from the current generation, but with each 
parent participating in at least one trial. The union of the 
set of offspring and parents was then ranked according to 
the fitness of the individuals. The best 50 form the new 
generation. 

The fact that members of a population are only ever 
discarded when offspring of greater fitness are generated 
is known as an elitist strategy [11]. It is appropriate in this 
case because it encourages hill climbing, and because 
most of the offspring generated are not of very high 
quality [13].  

The random initial population was generated by (for each 
individual) assigning values to all vertex biases chosen 
randomly and uniformly from [0, 0.1], and then using 
JOSTLE to generate the partitions. Each of the 50,000 
random trials was generated in the same way. 1000 
generations, giving 50,000 evaluations of JOSTLE, were 
allowed for each run of the genetic algorithm. 

The genetic algorithm described here is a very simplified 
instance of the CHC Adaptive Search Algorithm [13] , but 
lacks incest prevention and restarts. The experiments 
performed showed that the genetic algorithm was able to 
produce new best individuals until near the completion of 
the allotted evaluations. 

3.6 RELATED WORK 

Martin and Otto [16] have also used a hybrid approach to 
graph partitioning. Their technique applied random 
changes to a partition, which was then subject to a local 
optimisation scheme (Kernighan-Lin) to improve it. 
Further changes and local optimisations were applied 
according to a simulated annealing scheme. The particular 
graphs used were not available for comparison. Mansour 
and Fox [17, 18] partitioned graphs with a GA using a 
direct encoding, where the subdomain membership of 
each vertex was explicitly represented by the value of a 
gene. Since these values were unconstrained, partitions of 
arbitrary imbalance were possible. These genes were 
concatenated and subject to 2-point crossover. The 
imbalance constraint was progressively enforced during 
evolution through the use of a penalty term in the fitness 
function. Meshes of upto approximately 550 nodes were 
partitioned. A genetic algorithm using the same direct 
representation has been applied to graph partitioning in 
the context of circuit partitioning, but was found to be 
outperformed by a mixed simulated annealing tabu search 
[19]. In contrast to the above, the work described here 
uses an optimisation scheme (JOSTLE) as the basis of a 
crossover and mutation operator for acting on partitions of 
unstructured meshes. 

4 EXPERIMENTAL RESULTS 

4.1 EXAMPLE GRAPHS 

Table 1 gives a list of the graphs, their sizes, the 
maximum, minimum & average degree of the vertices and 
a short description. The degree information (the degree of 
a vertex is the number of vertices adjacent to it) gives 
some idea of the character of the graphs. These range 
from relatively homogeneous dual graph, where every 
vertex represents a mesh element, in this case a triangle 
(2D) and so every vertex has at most 3 neighbours, to the 
non mesh-based graph add32 which has vertices of degree 
31.  

We have implemented the algorithms described here 
within the framework of JOSTLE, a mesh partitioning  

 



Table 1: Graph Properties 

 

Graph |V| |E| Max degree Min degree Ave degree Type 

data 2851 15093 17 3 10.59 3D nodal graph 

3elt 4720 13722 9 3 5.81 2D nodal graph 

uk 4824 6837 3 1 2.83 2D dual graph 

ukerbe1 5981 7852 8 2 2.63 2D nodal graph 

add32 4960 9462 31 1 3.82 32-bit adder (circuit) 

crack 10240 30380 9 3 5.93 2D nodal graph 

4elt 15606 45878 10 3 5.88 2D nodal graph 

 

 

Table 2: A Comparison of Cut-edge Results for JOSTLE C
3

J, against those of the Evolutionary Search Algorithm C
3
Ev, 

both with 3% Imbalance Tolerance 

 

Graph P=4 P=8 P=16 P=32 

 C
3

J C
3

J/C
3
Ev C

3
J C

3
J/C

3
Ev C

3
J C

3
J/C

3
Ev C

3
J C

3
J/C

3
Ev 

data 453 1.20 763 1.18 1283 1.11 2077 1.10 

3elt 203 1.02 406 1.21 630 1.11 1007 1.05 

uk 76 1.81 105 1.27 191 1.24 316 1.19 

ukerbe1 61 1.02 111 1.01 206 1.05 357 1.05 

add32 54 1.64 106 1.54 185 1.58 265 1.25 

crack 460 1.28 785 1.16 1242 1.15 1782 1.06 

4elt 382 1.20 644 1.22 1024 1.11 1689 1.10 

 

 

Table 3: A Comparison of Cut-edge Results for METIS C
3
M, against those of the Evolutionary Search Algorithm C

3
Ev, 

both with 3% Imbalance Tolerance 

 

Graph P=4 P=8 P=16 P=32 

 C
3

M C
3

M/C
3
Ev C

3
J C

3
M/C

3
Ev C

3
M C

3
M/C

3
Ev C

3
M C

3
M/C

3
Ev 

data 473 1.25 860 1.33 1371 1.19 2146 1.14 

3elt 257 1.29 381 1.13 662 1.17 1049 1.09 

uk 52 1.24 116 1.40 195 1.27 303 1.14 

ukerbe1 78 1.30 133 1.21 235 1.19 394 1.16 

add32 107 3.24 94 1.36 219 1.87 285 1.34 

crack 474 1.32 784 1.16 1299 1.20 1910 1.14 

4elt 359 1.13 759 1.44 1104 1.20 1842 1.20 

 



Table 4: A Comparison of Cut-edge Results for the Random Search C
3

R, against those of the Evolutionary Search 
Algorithm C

3
Ev, both with 3% Imbalance Tolerance 

 

Graph P=4 P=8 P=16 P=32 

 C
3

R C
3

R/C
3
Ev C

3
R C

3
R/C

3
Ev C

3
R C

3
R/C

3
Ev C

3
R C

3
R/C

3
Ev 

data 389 1.03 664 1.03 1181 1.03 1945 1.03 

3elt 199 1.00 340 1.01 579 1.02 987 1.03 

uk 42 1.00 90 1.08 165 1.07 280 1.06 

ukerbe1 61 1.02 111 1.01 206 1.05 357 1.05 

add32 33 1.00 69 1.00 117 1.00 212 1.00 

crack 361 1.00 697 1.03 1115 1.03 1757 1.05 

4elt 321 1.01 544 1.03 948 1.03 1604 1.04 

 

software tool developed at the University of Greenwich 
and freely available for academic and research purposes 
under a licensing agreement from 
http://www.gre.ac.uk/jostle. The test graphs have been 
chosen to be a representative sample of small to medium 
scale real-life problems and include both 2D and 3D 
examples of nodal graphs (where the mesh nodes are 
partitioned) and dual graphs (where the mesh elements are 
partitioned). We have also included a non mesh-based 
graph add32. 

4.2 EXPERIMENTAL FRAMEWORK AND 

RESULTS 

To demonstrate the quality of the partitions, we have 
compared the results obtained using the evolutionary 
algorithm with those produced by two public domain 
partitioning packages JOSTLE [10] and  METIS [7], and 
to the best of many (50,000) randomly biased evaluations 
of JOSTLE. Comparisons of the number of cut edges 
found at 3% imbalance are recorded in Tables 2, 3 and 4 
respectively. Partitions for each of the example graphs 
were generated for P = 4, 8, 16 and 32 subdomains. 

The results show that the evolutionary algorithm was able 
to find results substantially better than the public domain 
packages JOSTLE and METIS, and in most cases 
superior to the randomly biased JOSTLE.  

The difference in quality improvement over JOSTLE and 
METIS tends to diminish as P increases. It is tempting to 
speculate that this is because the margins for difference 
decrease as the number of vertices per subdomain 
decreases. Indeed in the limit where P=V the only 
balanced partition (for an unweighted graph at least) is to 
put one vertex in each subdomain and so the differences 
vanish altogether. 

For add32 the evolutionary algorithm gave no 
improvement over the randomly biased trials. This graph 
shows none of the regularity enjoyed by the 
“unstructured” meshes and which is exploited by the 
mutation operator. 

Results of the same quality as those obtained using 
random search were usually found more quickly using the 
evolutionary algorithm. 

4.3 FURTHER WORK 

It is intended to perform tests to quantify the performance 
of the evolutionary algorithm and to understand how it 
depends on the relative biases of boundary and interior 
nodes, and the number of parents during crossover. It is 
also proposed to establish a benchmark archive of graph 
partitions. 

The generation of graphs with known optimal partitions 
and zero imbalance is easy: e.g. one can simply 
repeatedly bisect a uniform, rectangular planar graph say 
128 x 128 vertices into 16 pieces. It is intended to try to 
reproduce such partitions using the evolutionary 
algorithm.  
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