
A Combined Evolutionary Search and Multilevel Approach to Graph

Partitioning

Alan J. Soper

School of Computing and
Mathematical Sciences

University of Greenwich
Park Row

LONDON SE10 9LS
A.J.Soper@gre.ac.uk

Chris Walshaw

School of Computing and
Mathematical Sciences

University of Greenwich
Park Row

LONDON SE10 9LS
C.Walshaw@gre.ac.uk

Mark Cross

School of Computing and
Mathematical Sciences

University of Greenwich
Park Row

LONDON SE10 9LS

Abstract

Graph partitioning divides a graph into several
pieces by cutting edges. The graph partitioning
problem is to divide so that the number of
vertices in each piece is the same within some
defined tolerance and the number of cut edges
separating these pieces is minimised. Important
examples of the problem arise in partitioning
graphs known as meshes for the parallel
execution of computational mechanics codes.
Very effective heuristic algorithms have been
developed for these meshes which run in real-
time, but it is unknown how good the partitions
are since the problem is in general NP-complete.
This paper reports an evolutionary search
algorithm for finding benchmark partitions. A
distinctive feature is the use of a multilevel
heuristic algorithm to generate an effective
linkage during crossover.

1 INTRODUCTION

The need for graph partitioning arises naturally in many
applications. For example in finite element (FE) and finite
volume (FV) computational mechanics (CM) codes
meshes composed of elements such as triangles or
tetrahedra are often better suited than regularly structured
grids for representing completely general geometries and
resolving wide variations in behaviour via variable mesh
densities. Meanwhile, the modelling of complex
behaviour patterns means that the problems are often too
large to fit onto serial computers, either because of
memory limitations or computational demands, or both.
Distributing a graph (corresponding to the computational
and communication requirements of the mesh) across a
parallel computer so that the computational load is evenly
balanced and the data locality maximised is known as

graph partitioning. It is well known that this problem is
NP-complete, so in recent years much attention has been
focused on developing suitable heuristics, and a range of
powerful methods have been devised, e.g [6,7,8]. Because
of the NP-complete nature of the problem (i.e. an optimal
solution cannot be found in polynomial time) it is
impossible to know how good the results of such
algorithms are. Nonetheless we report on a technique,
combining an evolutionary search algorithm together with
a multilevel graph partitioner, which has enabled us to
find partitions considerably better than those that can be
found by any of the public domain graph partitioning
packages such as JOSTLE [10] and METIS [7]. We also
do not claim this technique as a possible substitute for the
aforementioned packages; the very long run times
preclude such a possibility for the typical applications in
which they are used. However we do consider it of
interest to establish benchmark partitions, and to describe
the method of finding them.

1.1 OVERVIEW

In this paper we discuss a strategy for combining
evolutionary search techniques with a standard graph
partitioning method. A particularly popular and successful
class of algorithms which address the graph partitioning
problem are known as multilevel algorithms. They usually
combine a graph contraction algorithm which creates a
series of progressively smaller and coarser graphs
together with a local optimisation method which, starting
with the coarsest graph, refines the partition at each graph
level.

We employ the evolutionary search algorithm by
constructing a population of variants of the original graph
(differing from the original only by edge weighting) and
then use this multilevel algorithm almost as a `black box'
operator to determine their fitness by computing a
partition of each which hopefully will also be a good
partition of the original graph. The population evolves
either by individual members mutating or by several

members crossing with each other to generate a different
(and hopefully fitter) child.

We have conducted many experiments to test the
technique and present some of the results including
benchmarks of public domain partitioning packages, and
tests for the effectiveness of the evolutionary search. The
principal innovation described in this paper is the
combination of evolutionary search techniques and a
multilevel graph partitioner.

2 MULTILEVEL GRAPH

PARTITIONING

In this section we discuss the graph partitioning problem
and outline our multilevel algorithm known as JOSTLE,
described in [10], for addressing it.

Let G = G(V, E) be an undirected graph of vertices V,
with edges E. Typically for graphs arising from FE or FV
meshes the edges will model the data dependencies in the
mesh and the graph vertices can either represent mesh
nodes (the nodal graph), mesh elements (the dual graph),
a combination of both (the full or combined graph) or
some other special purpose representation. We assume
that both vertices and edges can be weighted (with non-
negative integer values) and that |v| denotes the weight of
a vertex v and similarly for edges and sets of vertices and
edges (although it is often the case that vertices and edges
are given unit weights, |v|=1 for all v in V and |e|=1 for all
e in E and indeed this is true for all of our test examples).
Given that the mesh needs to be distributed to P
processors, a partition is defined to be a mapping of V
onto P disjoint subdomains.

The definition of the graph partitioning problem is to find
a partition which evenly balances the load or vertex
weight in each subdomain whilst minimising the
communications cost. To evenly balance the load, the
optimal subdomain weight is the smallest integer greater
than |V|/P and the imbalance is then defined as the
maximum subdomain weight divided by the optimal.
(since the computational speed of the underlying
application is determined by the most heavily weighted
processor). It is normal practice in graph partitioning to
approximate the communications cost by the weight of
cut edges and the usual (although not universal) definition
of the graph partitioning problem is therefore to find a
partition such that the imbalance is unity and such that the
number of cut edges |Ec| is minimised. Our experiments
will use an imbalance of 1.03 (or 3%), since this is
considered acceptable for mesh partitioning and JOSTLE
performs well at this tolerance.

2.1 THE MULTILEVEL PARADIGM

In recent years it has been recognised that an effective
way of both speeding up graph partitioning techniques
and/or, perhaps more importantly, giving them a global
perspective is to use multilevel techniques. The idea is to
match pairs of vertices to form clusters, use the clusters to

define a new graph and recursively iterate this procedure
until the graph size falls below some threshold. The
coarsest graph is then partitioned (possibly with a crude
algorithm) and the partition is successively optimised on
all the graphs starting with the coarsest and ending with
the original. This sequence of contraction followed by
repeated expansion/optimisation loops is known as the
multilevel paradigm and has been successfully developed
as a strategy for overcoming the localised nature of the
Kernighan-Lin (KL) [9], and other optimisation
algorithms.

The multilevel idea was first proposed by Barnard &
Simon [1], as a method of speeding up spectral bisection
and improved by both Hendrickson & Leland [5] and Bui
& Jones [2], who generalised it to encompass local
refinement algorithms. Several algorithms for carrying
out the matching have been devised by Karypis & Kumar
[7], while Walshaw & Cross describe a method for
utilising imbalance in the coarsest graphs to enhance the
final partition quality [10].

Graph Contraction

To create a coarser graph Gl+1(Vl+1, El+1) from Gl(Vl , El)
we use a variant of the edge contraction algorithm
proposed by Hendrickson & Leland [5]. The idea is to
find a maximal independent subset of graph edges, or a
matching of vertices, and then collapse them. The set is
independent if no two edges in the set are incident on the
same vertex (so no two edges in the set are adjacent), and
maximal if no more edges can be added to the set without
breaking the independence criterion.

Having found such a set, each selected edge is collapsed
and the vertices, u1 , u2 in Vl say, at either end of it are
merged to form a new vertex v in Vl+1 with weight |v| =
|u1| + |u2|. A simple way to construct a maximal
independent subset of edges is to create a randomly
ordered list of the vertices and visit them in turn,
matching each unmatched vertex with an unmatched
neighbouring vertex (or with itself if no unmatched
neighbours exist). Matched vertices are removed from the
list

The Initial Partition

Having constructed the series of graphs until the number
of vertices in the coarsest graph is smaller than some
threshold, the normal practice of the multilevel strategy is
to carry out an initial partition.

Here, following the idea of Gupta [4], we contract until
the number of vertices in the coarsest graph is the same as
the number of subdomains P, and then simply assign
vertex i to subdomain Si then commence on the
expansion/optimisation sequence.

Partition Expansion

Having optimised the partition on a graph Gl, the partition
must be interpolated onto its parent Gl-1. The

interpolation itself is a trivial matter; if a vertex v in Vl is
in subdomain Sp then the matched pair of vertices that it
represents, v1, v2 in Vl-1, will be in Sp.

2.2 THE ITERATIVE OPTIMISATION

ALGORITHM

The iterative optimisation algorithm that we use at each
graph level is a variant of the Kernighan-Lin (KL)
bisection optimisation algorithm which includes a local
search mechanism to enable it to escape from local
minima, with respect to the number of cut edges and
single vertex migrations between subdomains.

Our implementation uses bucket sorting, the linear time
complexity improvement of Fiduccia & Mattheyses [3],
and is a partition optimisation formulation; in other words
it optimises a partition of P subdomains rather than a
bisection.

The algorithm, as is typical for KL type algorithms, has
inner and outer iterative loops with the outer loop
terminating when no migration takes place during an
inner loop. The inner loop proceeds by examining
candidate vertices, highest gain (improvement in cut-
weight) first, testing whether the vertex is acceptable for
migration (according to imbalance and gain criteria). The
algorithm also uses a KL type hill-climbing strategy; in
other words vertex migration from subdomain to
subdomain can be accepted even if it degrades the
partition quality and later, based on the subsequent
evolution of the partition, either rejected or confirmed.
The algorithm, together with conditions for vertex
migration acceptance and confirmation is fully described
in [10].

3 COMBINING EVOLUTIONARY

SEARCH WITH THE MULTILEVEL

GRAPH PARTITIONER

Evolutionary search is a stochastic search technique that
generates new points (or individuals which in our case are
partitions) in a search space using information from a
finite population of already evaluated points. Typically a
new population is generated of equal size to the current
population, which in turn provides the basis for producing
a further population (termed a generation) and so on. This
process is given direction by selecting more information
from the fitter individuals in the current population when
producing new search points [11]; partition fitness taking
account of the number of cut edges and the imbalance.

Each new search point is produced by one of two
operations: crossover which combines information from
more than one individual in the current generation in
random fashion, and mutation which randomly modifies a
single individual. The construction of successful
crossover and mutation operators is problem specific and
often complex, especially where individuals are subject to
constraints as are the partitions, so that information from
different individuals cannot be arbitrarily combined or

modified. Further, the information needs to be effectively
exploited so that new individuals result that are fitter than
the current best individuals with sufficient probablility
even when the current generation is already very good
[12].

Evolutionary search algorithms have recently been
successfully applied to a diverse set of problems
providing useful examples of crossover and mutation
operators which provide a guide for developing such
operators for new problems. The operators described in
this paper extend an approach to the Travelling Salesman
Problem (TSP) [14] and the Constrained Minimum
Spanning Tree Problem (CMSTP) [15], both of which
require a search for a set of links satisfying constraints
(forming a tour for the TSP) and for which the sum of
their costs is a minimum. Clearly the graph partitioning
problem is of similar character: find a set of links (cut
edges) subject to the constraint that they generate a
partition with acceptable imbalance and that the sum of
their (edge) weights, which are all unity, is a minimum.

The approach normally works by first defining a
parametric representation for candidate tours (or CMSTs),
upon which the many crossover and mutation operators
available for parametric problems can then act [11]. The
parametric representations are produced by “biasing” the
link costs, ie adding spurious positive values to the cost of
each link, and then applying a particular heuristic
algorithm to produce the corresponding tour or CMST.
The heuristic algorithm used should give good solutions
for a large range of different problems (sets of link costs).
We use biased edge weights to alter the output of the
heuristic algorithm used here, JOSTLE, but form our
genetic operators differently.

3.1 INTERACTION WITH THE MULTILEVEL

PARTITIONER

We first describe how JOSTLE responds to a graph with
biased edge weights. In fact each vertex is assigned a bias
greater than or equal to zero, and each edge a dependent
weight of unity plus the sum of the biases of its end
vertices. JOSTLE responds to these edge weights so that:

a) When contracting a graph, highest weight edges are
collapsed first (subject to their being independent).

b) When performing iterative optimisation, vertex gains
are calculated using the biased edge weights.

When applying JOSTLE to a graph with biased edge
weights, the general effect will be that vertices with a
small bias are more likely to appear at the boundary of a
subdomain than those with a large one, and that edges
with lower biased weight are more likely to become cut
edges than those with higher weight.

It is easy to see for simple small meshes, simulating
JOSTLE by hand, that particular partitions are achievable
by choosing appropriate biases. However, we choose not
to use the vertex biases as a representation for generating
all partitions. Such a representation would have very high

redundancy and would for the most part produce many
partitions of low quality and hence little interest. Instead,
for each offspring we explicitly construct a new set of
biases, and hence a new partition, from one or more
existing parent partitions. The bias values are chosen
carefully so that JOSTLE’s ability to produce partitions of
good quality (with respect to the unweighted graph) is not
too much impaired, while at the same time there is
information transfer from the parents to the offspring.

Since the bias values are discarded after a new offspring
has been produced, the evolutionary search algorithm
described here is not a traditional genetic algorithm since
no representation (or genotype) is maintained, distinct
from an actual partition.

3.2 CROSSOVER OPERATOR

We create a new set of biases from a selected number of
parent partitions as follows:

For each vertex in the graph, examine whether in two or
more of the parent partitions that vertex is a border vertex
(ends a cut edge). If so, assign the vertex a bias value
chosen randomly and uniformly from the range [0, 0.01].
Otherwise assign a bias value of 0.1 plus a random
number chosen in the same range.

Border vertices will occur in two or more parents if either
identical or adjacent cut edges also occur. Either way we
take this as evidence that the vertex should remain as a
border one in the child - under the assumption that the
presence of this particular border vertex is a contributing
factor to the fitness of two or more fit parents. Hence a
very small bias is assigned.

We make all other vertices less likely to become border
vertices by assigning them a larger bias value. Since in
both cases the bias value is small - much less than the unit
weight of an edge - JOSTLE will produce a partition for
the most part optimised with respect to the true edge
weights. Hence the requirement of transfer of information
to a partition of high quality can occur as required for a
successful crossover operator.

Adding a constant to all bias values will have no affect on
the partition produced. When considering their effect on
graph contraction; only the relative ordering of the
vertices by their biases and the edges at a vertex by their
weights matters. However their relative size (over and
above the effect on ordering) does alter what happens
during the optimisation stage since the transfer of vertices
between partitions may proceed so as to decrease the sum
of biased edge weights, but increase the true total edge
weight and hence cut edges. The greater the relative bias
towards border vertices remaining so in the offspring, the
greater the number that will be preserved on average, but
at the cost of the offspring being more likely of poorer
quality. The choice of a relative bias of 0.1 towards
preserving border nodes is a value that has been shown by
the experiments performed to give the right tradeoff
between these competing effects. Informally we are
relying on JOSTLE to preserve common border vertices

from different pairs of partitions that can be “joined up”
so as to produce a partition of high quality within the
imbalance constraint, in effect finding an appropriate
linkage [11].

At each mating, two, three or four mates were randomly
chosen to crossover together, a range found to work well
in trials on a number of graphs.

3.3 MUTATION OPERATOR

We create a new set of biases from a parent partition as
follows:

For each vertex in the graph examine whether it is a
border vertex, the neighbour of a border vertex or the
neighbour of a neighbour of a border vertex. If so, assign
the vertex a bias value chosen randomly and uniformly
from the range [0, 0.01]. Otherwise assign a bias value of
2.0 plus a random number chosen in the same range.

Considering the vertex biases as forming a landscape over
the graph, the bias at any vertex giving its height, the
effect will be a deep, flat-bottomed trench along the
partition boundaries. The trench is considered deep since
edge weights within the trench will be 4.0 different from
those outside, so that JOSTLE’s optimisation stage will
have a strong tendency to place boundaries within the
trench.

Motivations for this arrangement are the following:

a) Since the edge weight biases within the trenches are
small compared with unity, the true edge weight, JOSTLE
can still successfully optimise within the trenches with
respect to the true total edge weight.

b) Unstructured meshes often show considerable
regularity, especially locally in the form of translational
symmetry, so that good quality partition boundaries are
often found, nearby and locally parallel to each other.
Hence a good place to look for another partition given an
existing partition of good quality is within its trenches.

c) It should be possible to find new partitions mainly
within the trenches, that satisfy the balance constraint,
since there is freedom for all subdomains to gain and lose
similar numbers of nodes when boundaries are shifted to
mainly parallel positions. Here we need to take into
account that the width of a trench spans three edges and
so allows some boundaries to move more than others.
Clearly the extent to which this will hold depends on the
graph structure and the number of subdomains and their
shape.

d) The trenches allow variations orthogonal to the
optimisations performed by JOSTLE ie there exist
partitions for the most part lying in the trenches that will
result from applying JOSTLE to bias values differing in
their random parts only. This is because JOSTLE only
considers the transfer of a limited number of vertices at a
time between subdomains at any optimisation step. The
movements of subdomain boundaries to adjacent parallel

positions will in general require the transfer of larger
numbers of vertices than JOSTLE allows.

Properties a) – d) taken together are desirable properties
for a mutation operator since they should lead to the
generation of “nearby” partitions of similar, and hence
sometimes superior quality.

The choice of the value 2.0 to bias JOSTLE towards
placing subdomain boundaries in the trench is again a
compromise figure. A larger value on average places
more border vertices in the trench but at a cost of poorer
quality partitions. Again this value was chosen by
experimenting with a number of different graphs.

3.4 FITNESS FUNCTION AND IMBALANCE

The fitness of a partition (to be maximised) was defined
to be minus the number of cut edges times the imbalance.
The imbalance was included in the fitness measure
because the population of partitions can occasionally
include individual partitions of greater imbalance than
that sought, if JOSTLE fails to satisfy the constaint. This
can occur because of a limit on the number of calls to the
load-balancer which is hard coded to prevent cyclic
behaviour in controlling the two minimisation variables,
the cut-weight and the maximum subdomain size.
However, the code rarely reaches this limit and (except if
the imbalance is set to zero) JOSTLE usually achieves the
required balance.

The fitness function imposes a soft, but heavy penalty on
partitions with greater imbalance; sufficiently heavy so
that partitions within the balance constraint eventually
dominated the population as evolution progressed. The
required imbalance is an input parameter to JOSTLE and
was set at 3%.

3.5 GENETIC ALGORITHM PARAMETERS

Due to the size of the meshes and the time required to
execute JOSTLE, a fairly small population size of 50 was
used. Small population sizes have been used successfully
when hill climbing is effective, and experiments with the
mutation operator indicated that this was so.

A new generation was produced as follows: 50 new
offspring were produced by either crossover or mutation
at a ratio of 7::3. Mating groups of individuals for
crossover and candidates for mutation were selected
randomly from the current generation, but with each
parent participating in at least one trial. The union of the
set of offspring and parents was then ranked according to
the fitness of the individuals. The best 50 form the new
generation.

The fact that members of a population are only ever
discarded when offspring of greater fitness are generated
is known as an elitist strategy [11]. It is appropriate in this
case because it encourages hill climbing, and because
most of the offspring generated are not of very high
quality [13].

The random initial population was generated by (for each
individual) assigning values to all vertex biases chosen
randomly and uniformly from [0, 0.1], and then using
JOSTLE to generate the partitions. Each of the 50,000
random trials was generated in the same way. 1000
generations, giving 50,000 evaluations of JOSTLE, were
allowed for each run of the genetic algorithm.

The genetic algorithm described here is a very simplified
instance of the CHC Adaptive Search Algorithm [13] , but
lacks incest prevention and restarts. The experiments
performed showed that the genetic algorithm was able to
produce new best individuals until near the completion of
the allotted evaluations.

3.6 RELATED WORK

Martin and Otto [16] have also used a hybrid approach to
graph partitioning. Their technique applied random
changes to a partition, which was then subject to a local
optimisation scheme (Kernighan-Lin) to improve it.
Further changes and local optimisations were applied
according to a simulated annealing scheme. The particular
graphs used were not available for comparison. Mansour
and Fox [17, 18] partitioned graphs with a GA using a
direct encoding, where the subdomain membership of
each vertex was explicitly represented by the value of a
gene. Since these values were unconstrained, partitions of
arbitrary imbalance were possible. These genes were
concatenated and subject to 2-point crossover. The
imbalance constraint was progressively enforced during
evolution through the use of a penalty term in the fitness
function. Meshes of upto approximately 550 nodes were
partitioned. A genetic algorithm using the same direct
representation has been applied to graph partitioning in
the context of circuit partitioning, but was found to be
outperformed by a mixed simulated annealing tabu search
[19]. In contrast to the above, the work described here
uses an optimisation scheme (JOSTLE) as the basis of a
crossover and mutation operator for acting on partitions of
unstructured meshes.

4 EXPERIMENTAL RESULTS

4.1 EXAMPLE GRAPHS

Table 1 gives a list of the graphs, their sizes, the
maximum, minimum & average degree of the vertices and
a short description. The degree information (the degree of
a vertex is the number of vertices adjacent to it) gives
some idea of the character of the graphs. These range
from relatively homogeneous dual graph, where every
vertex represents a mesh element, in this case a triangle
(2D) and so every vertex has at most 3 neighbours, to the
non mesh-based graph add32 which has vertices of degree
31.

We have implemented the algorithms described here
within the framework of JOSTLE, a mesh partitioning

Table 1: Graph Properties

Graph |V| |E| Max degree Min degree Ave degree Type

data 2851 15093 17 3 10.59 3D nodal graph

3elt 4720 13722 9 3 5.81 2D nodal graph

uk 4824 6837 3 1 2.83 2D dual graph

ukerbe1 5981 7852 8 2 2.63 2D nodal graph

add32 4960 9462 31 1 3.82 32-bit adder (circuit)

crack 10240 30380 9 3 5.93 2D nodal graph

4elt 15606 45878 10 3 5.88 2D nodal graph

Table 2: A Comparison of Cut-edge Results for JOSTLE C
3

J, against those of the Evolutionary Search Algorithm C
3
Ev,

both with 3% Imbalance Tolerance

Graph P=4 P=8 P=16 P=32

 C
3

J C
3

J/C
3
Ev C

3
J C

3
J/C

3
Ev C

3
J C

3
J/C

3
Ev C

3
J C

3
J/C

3
Ev

data 453 1.20 763 1.18 1283 1.11 2077 1.10

3elt 203 1.02 406 1.21 630 1.11 1007 1.05

uk 76 1.81 105 1.27 191 1.24 316 1.19

ukerbe1 61 1.02 111 1.01 206 1.05 357 1.05

add32 54 1.64 106 1.54 185 1.58 265 1.25

crack 460 1.28 785 1.16 1242 1.15 1782 1.06

4elt 382 1.20 644 1.22 1024 1.11 1689 1.10

Table 3: A Comparison of Cut-edge Results for METIS C
3
M, against those of the Evolutionary Search Algorithm C

3
Ev,

both with 3% Imbalance Tolerance

Graph P=4 P=8 P=16 P=32

 C
3

M C
3

M/C
3
Ev C

3
J C

3
M/C

3
Ev C

3
M C

3
M/C

3
Ev C

3
M C

3
M/C

3
Ev

data 473 1.25 860 1.33 1371 1.19 2146 1.14

3elt 257 1.29 381 1.13 662 1.17 1049 1.09

uk 52 1.24 116 1.40 195 1.27 303 1.14

ukerbe1 78 1.30 133 1.21 235 1.19 394 1.16

add32 107 3.24 94 1.36 219 1.87 285 1.34

crack 474 1.32 784 1.16 1299 1.20 1910 1.14

4elt 359 1.13 759 1.44 1104 1.20 1842 1.20

Table 4: A Comparison of Cut-edge Results for the Random Search C
3

R, against those of the Evolutionary Search
Algorithm C

3
Ev, both with 3% Imbalance Tolerance

Graph P=4 P=8 P=16 P=32

 C
3

R C
3

R/C
3
Ev C

3
R C

3
R/C

3
Ev C

3
R C

3
R/C

3
Ev C

3
R C

3
R/C

3
Ev

data 389 1.03 664 1.03 1181 1.03 1945 1.03

3elt 199 1.00 340 1.01 579 1.02 987 1.03

uk 42 1.00 90 1.08 165 1.07 280 1.06

ukerbe1 61 1.02 111 1.01 206 1.05 357 1.05

add32 33 1.00 69 1.00 117 1.00 212 1.00

crack 361 1.00 697 1.03 1115 1.03 1757 1.05

4elt 321 1.01 544 1.03 948 1.03 1604 1.04

software tool developed at the University of Greenwich
and freely available for academic and research purposes
under a licensing agreement from
http://www.gre.ac.uk/jostle. The test graphs have been
chosen to be a representative sample of small to medium
scale real-life problems and include both 2D and 3D
examples of nodal graphs (where the mesh nodes are
partitioned) and dual graphs (where the mesh elements are
partitioned). We have also included a non mesh-based
graph add32.

4.2 EXPERIMENTAL FRAMEWORK AND

RESULTS

To demonstrate the quality of the partitions, we have
compared the results obtained using the evolutionary
algorithm with those produced by two public domain
partitioning packages JOSTLE [10] and METIS [7], and
to the best of many (50,000) randomly biased evaluations
of JOSTLE. Comparisons of the number of cut edges
found at 3% imbalance are recorded in Tables 2, 3 and 4
respectively. Partitions for each of the example graphs
were generated for P = 4, 8, 16 and 32 subdomains.

The results show that the evolutionary algorithm was able
to find results substantially better than the public domain
packages JOSTLE and METIS, and in most cases
superior to the randomly biased JOSTLE.

The difference in quality improvement over JOSTLE and
METIS tends to diminish as P increases. It is tempting to
speculate that this is because the margins for difference
decrease as the number of vertices per subdomain
decreases. Indeed in the limit where P=V the only
balanced partition (for an unweighted graph at least) is to
put one vertex in each subdomain and so the differences
vanish altogether.

For add32 the evolutionary algorithm gave no
improvement over the randomly biased trials. This graph
shows none of the regularity enjoyed by the
“unstructured” meshes and which is exploited by the
mutation operator.

Results of the same quality as those obtained using
random search were usually found more quickly using the
evolutionary algorithm.

4.3 FURTHER WORK

It is intended to perform tests to quantify the performance
of the evolutionary algorithm and to understand how it
depends on the relative biases of boundary and interior
nodes, and the number of parents during crossover. It is
also proposed to establish a benchmark archive of graph
partitions.

The generation of graphs with known optimal partitions
and zero imbalance is easy: e.g. one can simply
repeatedly bisect a uniform, rectangular planar graph say
128 x 128 vertices into 16 pieces. It is intended to try to
reproduce such partitions using the evolutionary
algorithm.

References

[1] S.T. Barnard and H.D. Simon. A Fast Multilevel
Implementation of Recursive Spectral Bisection for
Partitioning Unstructured Problems. Concurrency:
Practice & Experience, 6(2):101-117, 1994.

[2] T.N. Bui and C.Jones. A Heuristic for Reducing Fill-
In in Sparse Matrix Factorization. R.F. Sincovec et
al., editor, Parallel Processing for Scientific
Computing, pages 445-452. SIAM, 1993.

[3] C.M. Fiduccia and R.M. Mattheyses. A Linear Time
Heuristic for Improving Network Partitions.
Proceedings of the 19th IEEE Design Automation
Conference, pages 175-181, IEEE, Piscataway, NJ,
1982.

[4] A.Gupta. Fast and effective algorithms for graph
partitioning and sparse matrix reordering. IBM
Journal of Research and Development, 41(1/2):171-
183, 1996.

[5] B.Hendrickson and R.Leland. A Multilevel
Algorithm for Partitioning Graphs. Technical Report
SAND 93-1301, Sandia National Laboratories,
Albuquerque, NM, 1993.

[6] B.Hendrickson and R.Leland. A Multilevel
Algorithm for Partitioning Graphs. In S.Karin, editor,
Proceedings Supercomputing '95, New York, NY
10036, 1995. ACM Press.

[7] G.Karypis and V.Kumar. A Fast and High Quality
Multilevel Scheme for Partitioning Irregular Graphs.
SIAM Journal Scientific Computing, 20(1):359-392,
1998.

[8] G.Karypis and V.Kumar. k-way Partitioning Scheme
for Irregular Graphs. Journal Parallel Distributed
Computing, 48(1):96-129, 1998.

[9] B.W. Kernighan and S.Lin. An Efficient Heuristic for
Partitioning Graphs. Bell Systems Technical Journal,
49:291-308, February 1970.

[10] C.Walshaw and M.Cross. Mesh Partitioning: a
Multilevel Balancing and Refinement Algorithm. To
appear in SIAM Journal Scientific Computing
(originally published as University of Greenwich
Technical Report 98/IM/35, 1998).

[11] D. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-
Wesley, Reading, MA, 1989.

[12] L. Altenberg. The Schema Theorem and Price’s
Theorem. In L. D. Whitley and M. D. Vose, editors,
Foundations of Genetic Algorithms 3, pages 23-49.
Morgan Kaufmann, 1995.

[13] J. Eshelman. The CHC adaptive search algorithm:
How to have safe search when engaging in non-
traditional genetic recombination, in G. J. E. Rawlins,
editor, Foundations of Genetic Algorithms, pages
205-218. Morgan Kaufmann, 1991,

[14] C. L. Valenzuela and L. P. Williams. Improving
Heuristic Algorithms for the Travelling Salesman
Problem by Using a Genetic Algorithm to Perturb the
Cities. In editor T. Back, Proceedings of the Seventh
International Conference on Genetic Algorithms,
pages 458-464. Morgan Kaufmann, 1997.

[15] A.J. Soper and S. McKenzie, The Use of a Biased
Heuristic by a Genetic Algorithm Applied to the
Design of Multipoint Connections in a Local Access
Network. In ‘GALESIA 97’ Second International
Conference on Genetic Algorithms: Innovations and
Applications, University of Strathclyde, Glasgow,
UK, pages 113-116. IEE Conference Publication 446,
1997.

[16] O. C. Martin and S. W. Otto. Partitioning of
Unstructured Meshes for Load Balancing.
Concurrency: Practice and Experience, Vol. 7(4):
303-314, 1995.

[17] N. Mansour and G. C. Fox. Allocating Data to
Distributed-memory Multiprocessors by Genetic
Algorithms. Concurrency: Practice and Experience,
Vol. 6(6): 485-504, 1994.

[18] N. Mansour and G. C. Fox. A Hybrid Genetic
Algorithm for Task Allocation in Multicomputers. In
editors R. K. Belew and L. B. Booker, Proceedings
of the Fourth International Conference on Genetic
Algorithms, pages 466-473. Morgan Kaufmann,
1991.

[19] C. Gil, J. Ortega, A. F. Diaz and M. D. G. Montoya.
Annealing-based Heuristics and Genetic Algorithms
for Circuit Partitioning in Parallel Test Generation.
Future Generation Computer Systems 14:439-451,
1998.

