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Summary

Multilevel algorithms are a successful class of optimization
techniques that address the mesh partitioning problem for
mapping meshes onto parallel computers. They usually
combine a graph contraction algorithm together with a lo-
cal optimization method that refines the partition at each
graph level. To date, these algorithms have been used al-
most exclusively to minimize the cut-edge weight in the
graph with the aim of minimizing the parallel communica-
tion overhead. However, it has been shown that for certain
classes of problems, the convergence of the underlying
solution algorithm is strongly influenced by the shape or
aspect ratio of the subdomains. Therefore, in this paper,
the authors modify the multilevel algorithms to optimize a
cost function based on the aspect ratio. Several variants of
the algorithms are tested and shown to provide excellent
results.
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1 Introduction

The need for mesh partitioning arises naturally in many
finite element (FE) and finite volume (FV) applications.
Meshes composed of elements such astriangles or tetra-
hedra are often better suited than regularly structured
gridsfor representing completely general geometriesand
resolving wide variations in behavior via variable mesh
densities. Meanwhile, the modeling of complex behavior
patterns means that the problems are often too large to fit
onto serial computers, either because of memory limita-
tions or computational demands or both. Distributing the
mesh acrossaparallel computer sothat the computational
load isevenly balanced and the datalocality maximizedis
known as mesh partitioning. It is well known that this
problem is NP-complete, so in recent years much atten-
tion has been focused on developing suitable heuristics,
and some powerful methods, many based on agraph cor-
responding to the communication requirements of the
mesh, have been devised (e.g., Hendrickson and Leland,
1995).

A particularly popular and successful class of algo-
rithms that address this mesh-partitioning problem is
known as multilevel algorithms.

They usually combine a graph contraction algorithm,
which creates a series of progressively smaller and
coarser graphstogether with alocal optimization method
that, starting with the coarsest graph, refinesthe partition
at each graph level. To date, these algorithms have been
used almost exclusively to minimize the cut-edge weight,
a cost that approximates the total communications vol -
umein the underlying solver. Thisisanimportant goal in
any parallel application in order to minimize the commu-
nications overhead, but it has been shown (Vanderstrae-
ten, Keunings, and Farhat, 1995) that for certain classesof
solution algorithm, the convergence of the solver is actu-
ally heavily influenced by the shape or aspect ratio (AR)
of the subdomains. In this case, the overall solution time
can be more dependent on the number of iterations than
on the parallel communications overhead (Vanderstrae-
ten et al., 1996). In this paper, therefore, we modify the
multilevel algorithms (the matching and local optimiza-
tion) to optimizeacost function based on AR. Wealso ab-
stract the process of modification to suggest how the mul-
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tilevel strategy can be modified into a generic technique
that can optimize arbitrary cost functions.

1.1 DOMAIN DECOMPOSITION
PRECONDITIONERS AND ASPECT RATIO

To motivate the need for aspect ratio optimization, we
consider the requirements of a class of solution tech-
niques. A natural parallel solution strategy for the under-
lying problemisto use an iterative solver such asthe con-
jugate gradient (CG) algorithm together with domain
decomposition (DD) preconditioning (e.g., Blazy,
Borchers, and Dralle, 1995). DD methods take advantage
of the partition of the mesh into subdomains by imposing
artificial boundary conditions on the subdomain bounda-
ries and solving the original problem on these subdo-
mains (Bramble, Pasciac, and Schatz, 1986). The subdo-
main sol utions are independent of each other and thus can
be determined in parallel without any communication be-
tween processors. In a second step, an “interface” prob-
lem is solved on the inner boundaries, which depends on
the jump of the subdomain solutions over the boundaries.
Thisinterface problem gives new conditions on the inner
boundaries for the next step of the subdomain solution.
Adding the results of the third step to the first gives the
new conjugate search direction in the CG algorithm.

Thetimeneeded by such apreconditioned CG solveris
determined by two factors, the maximum time needed by
any of the subdomain solutions and the number of itera-
tions of the global CG. Both are at least partialy deter-
mined by the shape of the subdomains. While an algo-
rithm such as the multigrid method as the solver on the
subdomainsisrelatively robust against shape, the number
of global iterations is heavily influenced by the AR of
subdomains (Vanderstraeten et al., 1996). Essentially, the
subdomains can be viewed as elements of the interface
problem (Farhat, Maman, and Brown, 1995; Farhat, Man-
del, and Roux, 1994), and just as with the normal finite
element method, in which the condition of the matrix sys-
tem isdetermined by the AR of elements, the condition of
the preconditioning matrix ishere dependent onthe AR of
subdomains.

1.2 RELATED WORK

Theidea of optimizing AR to maintain scalability in the
solver wasfirst developed by Farhat, Maman, and Brown
(1995) and Farhat, Mandel, and Roux (1994). This was
backed up by Vanderstraeten, Keunings, and Farhat
(1995) and Vanderstraeten et al. (1996), who showed that
partitioning for cut-edge weight was not necessarily the

“Thetime needed by such a
preconditioned CG solver is determined by
two factors, the maximum time needed by
any of the subdomain solutions and the
number of iterations of the global CG.”



most appropriate optimization for every solver. However,
the field of mesh partitioning has changed somewhat
since thiswork was carried out, and although other more
recent work existsthat takes AR into account (e.g., Diek-
mann, Meyer, and Monien, 1998; Diekmann, Schlim-
bach, and Walshaw, 1998; Schlimbach, 1998), our aimin
this paper isto extend theideasin light of recent develop-
ments in multilevel mesh-partitioning technology.

1.3 OVERVIEW

Below, in Section 2, we introduce the mesh partitioning
problem and establish someterminol ogy. Wethen discuss
themesh-partitioning problem asappliedto AR optimiza-
tion and describe how the graph needs to be modified to
carry this out. Next, in Section 3, we describe the multi-
level paradigm and present and compare three possible
matching algorithmsthat take account of AR. In Section 4,
we then describe a Kernighan-Lin (KL) (Kernighan and
Lin, 1970) typeiterativelocal optimization algorithm and
describe four possible modificationsthat aim to optimize
AR. Finally, in Section 5, we compare the results with a
cut-edge partitioner, suggest how the multilevel strategy
can be modified into a generic technique, and present
some ideas for further investigation.

The principal innovations described in this paper are
the following:

* inSection 2.3, wherewedescribe how thegraph canbe
modified to take AR into account;

 inSection 3.2, wherewe describethree matching algo-
rithms based on AR;

* in Section 4.3, where we describe four ways of using
the cost function to optimize for AR;

* in Section 4.5, where we describe how the bucket sort
canbemodifiedtotakeinto account non-integer gains.

2 Mesh Partitioning

2.1 THE MESH-PARTITIONING PROBLEM

To define the mesh-partitioning problem, let G = G(V, E)
bean undirected graph of verticesV, with edgesE that rep-
resent the datadependenciesin themesh. For the purposes
of thispaper, we assume that each graph vertex represents
amesh element and that graph edges arise from elements
that are adjacent in the sense of sharing an element face.
We assume that both vertices and edges can be weighted
(with positive integer values) and that |v| denotes the

weight of a vertex v and similarly for edges and sets of
vertices and edges. Given that the mesh needs to be dis-
tributed to P processors, define a partition Ttto be amap-
ping of Vinto P disjoint subdomains S suchthat U,S = V.
To evenly balance the load, the optimal subdomain
weightisgivenby S: = [ |V|/P] (wherethe ceiling func-
tion [x] returnsthe smallest integer > x), and the imbal -
ance is then defined as the maximum subdomain weight
divided by the optimal (since the computational speed of
the underlying application is determined by the most
heavily weighted processor).

Note that in the context of this paper, we use the term
load balancing or balancing to mean that each subdo-
main is assigned an equal share of the total graph vertex
weight. Indeed, in all the test meshes, every vertex has a
weight of 1, and so we can simplify thisfurther to say that
perfect balance is attained if each subdomainis assigned
an equal number of vertices. However, thisshould only be
considered as balancing the underlying applicationif itis
known that each graph vertex represents an equal amount
of work in the application independent of the mesh parti-
tion. In fact, for the domain decomposition methods with
which we concern ourselves here, thisisusually not true,
and the computational work is dominated by the cost of
thelocal subdomain solutions. Thesearenot normally in-
dependent of the mesh partition and indeed may be im-
possible to determine a priori, although for certain solu-
tion methods, it may be possibleto optimizearelated cost
function (Vanderstraeten et al., 1996). However, it goes
beyond the scope of this paper to address such issues, and
we assume that a partition is balanced solely by sharing
thevertices equally among the processorsin the hopethat
this will approximately balance the underlying applica-
tion.

Thedefinition of the mesh-partitioning problem, then,
istofind apartition that evenly balancestheload or vertex
weight in each subdomain while minimizing some cost
functionI". Typically, thiscost functionissimply thetotal
weight of cut edges, but in this paper we describe a cost
function based on AR. A more precise definition of the
mesh-partitioning problem isthereforeto find rtsuch that
§ < Sand such that I is minimized.

2.2 THE ASPECT RATIO
AND COST FUNCTION

We seek to modify the methods by optimizing the parti-
tiononthebasisof AR rather than cut-edgeweight. Todo
this, it is necessary to define a cost function that we seek



to minimize, and alogical choice would be max, AR(S),
where AR(S) is the AR of the subdomain S However,
maximum functions are notoriously difficult to optimize
(indeed, it is for this reason that most mesh-partitioning
algorithms attempt to minimize the total cut-edge weight
rather than the maximum between any two subdomains),
and so instead we choose to minimize the average AR:
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There are several definitions of AR, however. For exam-
ple, for agiven polygon S atypical definition (Mitchell
and Vasavis, 1992) istheratio of thelargest circlethat can
be contained entirely within S (inscribed circle) to the
smallest circle that entirely contains S (circumcircle).
However, these circles are not easy to calculate for arbi-
trary polygons, and in an optimization codein which ARs
may need to be cal culated very frequently, we do not be-
lieve thisto be a practical metric. It may also fail to ex-
press certain irregularities of shape. A careful discussion
of the relative merits of different ways of measuring AR
may befound in Schlimbach (1998), and for the purposes
of this paper, we follow the ideas therein and define the
AR of agiven shape by measuring the ratio of its perime-
ter length (surface area in 3-D) over that of some ideal
shape with identical area (volume in 3-D).

Suppose then that in 2-D, the ideal shapeis chosen to
be asguare. Given apolygon Swith area QS and perime-
ter length 9S, the ideal perimeter length (the perimeter
length of asquare with areaQS) is44/QS, and sothe AR
isdefined as 094/ QS. Alternatively, if theideal shapeis
chosen to be a circle, then the same argument gives the
AR of 052/ TQS. Infact, given the definition of the cost
function (1), it can be seen that these two definitions will
produce the same optimization problem (and hence the
same results) with the cost just modified by a constant C
(where C = 1/4 for the square and /27 for the circl ).
These definitions of AR are easily extendibleto 3-D, and
givenapolyhedron Swithvolume QSand surfaceareadS,
the AR can be calculated as CaS(Q9)??, where C = 1/4 if
the cube is chosen as the optimal shape and C = 1/z"*6*
for the sphere. Note that henceforth, in order to talk in
general termsfor both 2-D and 3-D, given an object S, we
shall usethetermsaSor surfacefor the surfacearea(3-D)
or perimeter length (2-D) of the object and QS or volume
for the volume (3-D) or area (2-D).

Of the above definitions of AR, we choose to use the
circle/sphere-based formulas since they guarantee that
the aspect ratios of any shape are = 1.

“The definition of the mesh-partitioning
problem, then, isto find a partition that
evenly balances the load or vertex weight
in each subdomain while minimizing some
cost function I'.”



Thisgivesaconvenient formulafor thecost function of
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whereC =1?(2d) ¢ P,andd(=2or 3)isthedimension
of themesh. Werefer tothiscost functionasT . O I,

because of the way it tries to match shapes to chosen
templ ates.

Infact, it will turn out (see, e.g., Section 3.2) that even
thisfunction may betoo complex for certain optimization
needs, and we can define a simpler one by assuming that
all subdomains have approximately the same volume,
QS,=QM /P, where QM is the total volume of the
mesh. This assumption may not necessarily betrue, but it
islikely to betrue locally (see Section 4.4). We can then
approximate (2) by

1 3
rtemplalezaz aSp’ ( )
p
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where C'=(1P) ¢ (2dQM) ¢ . This can be simplified
till further by noting that the surface of each subdomain
S, consists of two components, the exterior surface, 9°S,
where the surface of the subdomain coincides with the
surface of the mesh M, and the interior surface, o' S,
where S is adjacent to other subdomains and the surface
cuts through the mesh. Thus, we can break the z E?Sp

termin (3) into two parts, 29' S, andzr?esp ,andsim-
plify (3) further by noting that zgesp isjust oM, the ex-

terior surface of the mesh M. This then gives us a second
cost function to optimize:

rwrfacezKiz aiSp+ KZ' (4)
1p

1 d-1
where K, =(1P) 9 (2dQM) ¢ and K,=0M /K,. We
refer to thiscost functionasrl ., or I ; becauseit isjust
concerned with optimizing surfaces.

2.3 MODIFYING THE GRAPH

To use these cost functions in a graph-partitioning con-
text, we must add some additional qualities to the graph.
Figure 1 showsavery simplemesh (1a) anditsdual graph
(1b). Each element of the mesh correspondsto avertex in
the graph. The vertices of the graph can beweighted asis

usual (see Section 2.1), but in addition, vertices store the
volume and total surface of their corresponding element
(e.0., Qv, =Qe, anddv, =de,). Wealsoweight theedges
of the graph with the size of the surface they correspond
to. Thus, in Figure 1, if D(b, c) refersto the distance be-
tween pointsb and c, then the weight of edge (v,, v,) is
set to D(b, c). Inthisway, for vertices v, corresponding
to elements that have no exterior surface, the sum
of their edge weightsisequivalent to their surface

v, = 25 [(v;,Vv;)D. Thus, for vertex v,, av, =de,= D(b,C) +

D(c,e)+D(eb)=|(v,,vi)l+[(V,, Vs )+ (v, V3)l

When it comesto combining elementstogether, either
into subdomains or for the multilevel matching (Section
3) these properties, volume and surface can be easily
combined. Thus, in Figure 1c, where E, =e, +e,, E, =
e,+e,, and E; =e,, we see that volumes can be
directly summed—for example, QV, = QE, = Qe, +
Qe, = Qv, +Qv,, as can edge weights, for example,
|(V,.V,)|=D(b, c)+D(c,d) =|(v,, V,)l+](v,,Vs)} The
surface of acombined object Sisthe sum of the surfaces
of itsconstituent partslesstwicetheinterior surface—for
example, aV, = dE, = de, + de, — 2 X D(a,c) =
av, +av, —2|(v,,V,)| These properties are very similar
to propertiesin conventional graph algorithms, wherethe
volume combinesin the same way asweight and surfaces
combine as the sum of edge weights (although including
an additional term that expresses the exterior surfaced®).
The edge weights function identically.

Note that with these modificationsto the graph, it can
be seenthat if we optimize using the " cost function (4),
the AR mesh-partitioning problemisidentical to the cut-
edge weight mesh-partitioning problem with a special
edge weighting. However, the inclusion of non-integer
edge weights does have an effect on the some of the tech-
niques that can be used (e.g., see Section 4.5).

2.4 TESTING THE ALGORITHMS

Throughout this paper, we compare the effectiveness of
different approaches using aset of test meshes. Thealgo-
rithms have been implemented within the framework of
JOSTLE, amesh-partitioning software tool developed at
the University of Greenwich and freely availablefor aca-
demic and research purposesunder alicensing agreement
(available from http://www.gre.ac.uk/~c.walshaw/jostle).
The experimentswere carried out on aDEC Alphawith a
466 MHz CPU and 1 Gbyte of memory. Dueto space con-
siderations, we only include eight test meshes, but they
have been chosen to be a representative sample of me-
dium- to large-scale rea-life problems and include both



2-D and 3-D examples. Table 1 givesalist of the meshes
and their sizes in terms of the number of vertices and
edges. Thetable al so showsthe aspect ratio of each entire
mesh and the mesh grading, which here we define as the
maximum surface of any element over the minimum sur-
face, and thesetwo figures giveaguide asto how difficult
the optimization may be. For example, “uk” issimply a
triangulation of the British mainland and hencehasavery
intricate boundary and therefore a high aspect ratio. The
“wing” mesh, on the other hand, is a cube containing a
hollowed-out section in the shape of an airplanewing; the
AR istherefore reasonably close to 1, but the grading is
very high as the mesh goes from very small elements
close to the wing to very large ones in the far field.

Table 2 shows the results of the most successful com-
bination of algorithms—surface matching (SM) (see Sec-
tion 3.2) and local template gain/template cost optimiza-
tion (LTGTC) (see Section 4.3)—which were chosen asa
benchmark for the other combinations. For the four dif-
ferent values of P (the number of subdomains), the table
showsthe average aspectratioasgivenby I' , theedge cut
|E.|(i.e., the number of cut edges, not the weight of cut
edges weighted by surface size), and the time in seconds,
t., to partition the mesh. Notice that with the exception of
the“uk” mesh and P = 16, all partitions have average as-
pect ratios< 1.53, whichiswithin thetarget range of [ 1.0,
1.57] suggested in Diekmann, Meyer, and Monien (1998)
and Diekmann, Schlimbach, and Walshaw (1998)." In-
deed, for the” uk” mesh, itisno surprisethat theresultsfor
P = 16 are not optimal because the subdomains inherit
some of the poor AR from theoriginal mesh (whichhasan
AR of 3.82), and it is only when the mesh is split into
small enough pieces—P = 32, 64, or 128—that the opti-
mization succeeds in ameliorating this effect. Intuitively,
thisalso givesahint astowhy DD methodsareavery suc-
cessful technique as a solver.

Table 1
Test Meshes

(a c

Fig. 1 A simple mesh (a), its dual (b), the same mesh with
combined elements (c), and its dual (d)

Mesh Number of Vertices  Number of Edges Type Aspect Ratio Mesh Grading
uk 4824 6837 2-D triangles 3.82 7.98e+02
4elt-dual 30,269 44,929 2-D triangles 1.08 2.13e+04
t60k 60,005 89,440 2-D triangles 1.80 2.00e+00
dime20 224,843 336,024 2-D triangles 2.11 3.70e+03
csd 22,499 43,858 3-D tetrahedra 1.32 9.64e+01
wing 62,032 121,544 3-D tetrahedra 1.27 1.08e+06
mesh100 103,081 200,976 3-D tetrahedra 2.02 2.45e+02
cyl3 232,362 457,853 3-D tetrahedra 1.59 8.42e+00




Table 2

Final Results Using Surface Matching and Local Template Gain/Template Cost Optimization

P=16 P=32 P =64 P =128

Mesh r IEl t . [El t L IEl t T [El

uk 1.62 197 0.27 1.46 332 0.40 1.40 559 0.48 1.40 937 1.08
4elt-dual 1.24 898 0.88 1.28 1358 1.18 1.27 1985 1.40 1.29 2737 1.82
t60k 1.34 1031 1.37 1.28 1607 1.62 1.30 2524 2.03 1.31 3806 2.80
dime20 1.43 1889 492 1.34 2886 532 1.30 4651 6.15 1.26 6732 7.17
cs4 1.47 2625 2.00 1.47 3660 2.52 147 5000 3.23 1.48 6629 3.57
wing 1.37 9346 467 1.40 13,640 6.48 1.41 15,706 7.57 1.43 17,027 10.27
mesh100 1.53 6020 4.23 1.49 8413 7.23 1.49 11,577 6.38 1.50 15,995 8.00
cyl3 1.47 10,929 8.68 152 16,382 10.05 152 22,355 12.03 1.51 29,926 15.97

Thepartitioning timesranged from under 1 secondtoa
maximum of 16 seconds (for thelargest 3-D mesh). Expe-
rience suggests that thisis not an unreasonable overhead
for a domain decomposition-based method.

3 TheMultilevel Paradigm

In recent years, it has been recognized that an effective
way of both speeding up partition refinement and, per-
haps more important, giving it a global perspectiveisto
use multilevel techniques. The idea is to match pairs of
vertices to form clusters, use the clusters to define anew
graph, and recursively iterate this procedure until the
graph sizefallsbelow somethreshold. The coarsest graph
isthen partitioned, and the partition is successively opti-
mized on all the graphs starting with the coarsest and end-
ing with the original. This sequence of contraction fol-
lowed by repeated expansion/optimization loops is
known as the multilevel paradigm and has been success-
fully developed as a strategy for enhancing many parti-
tioning approaches. The multilevel idea was first pro-
posed by Barnard and Simon (1994) as a method of
speeding up spectral bisection. It was subsequently gen-
eralized by Hendrickson and Leland (1993), who em-
ployed it to give global partition quality to local refine-
ment al gorithms such asthat of Kernighanand Lin (1970)
and by Vanderstraeten et al. (1996), who used it to speed
up stochastic optimization techniques such as simulated
annealing (Kirkpatrick, Gelatt, and Vecchi, 1983). Sev-
eral algorithms for carrying out the matching have been
devised by Karypis and Kumar (1995a), while Wal shaw



and Cross (1998) describe a method for using imbalance
inthe coarsest graphsto enhancethefinal partition quality.

3.1 IMPLEMENTATION

Graph Contraction. To create a coarser graph
G,,1(V,,1,E ) fromG, (V, ,E, ), weuseavariant of the
edge contraction algorithm proposed by Hendricksonand
Leland (1993). Theideaisto find amaximal independent
subset of graph edges, or amatching of vertices, and then
collapse them. The set is independent because no two
edgesin the set areincident on the same vertex (so no two
edges in the set are adjacent) and maximal because no
more edges can be added to the set without breaking the
independence criterion. Having found such a set, each se-
lected edgeiscollapsed and thevertices, u;, u, 0 V,, say, at
either end of it are merged to form anew vertex, vO V, , ;
with weight |v|=]u, |+|u,]

Thelnitial Partition. Having constructed the series of
graphsuntil the number of verticesinthe coarsest graphis
smaller than some threshold, the normal practice of the
multilevel strategy istocarry outaninitial partition. Here,
following the idea of Gupta (1996), we contract until the
number of verticesinthe coarsest graph isthe sameasthe
number of subdomains, P, and then simply assign vertex i
to subdomain S. Unlike Gupta, however, we do not carry
out repeated expansi on/contraction cycles of the coarsest
graphstofind awell-balanced initial partition but instead,
since our optimization algorithm incorporates balancing
(of the vertex weights) (see Section 2.1), we commence
on the expansi on/optimization sequence immediately.

Partition Expansion. Having optimized the partition
on agraph G, the partition must be interpolated onto its
parentG, _,. Theinterpolationitself isatrivial matter; if a
vertex v J V, isin subdomain S, then the matched pair of
vertices that it represents, v, v, OV, _,, will bein S,

3.2 INCORPORATING THE ASPECT RATIO

Thematching part of the multilevel strategy can be easily
modified in several waysto take AR into account, and in
each case the vertices are visited (at most once) using a
randomly ordered linked list. Each vertex isthen matched
with an unmatched neighbor using the chosen matching
algorithm, and it and its match are removed from the list.
Verticeswith no unmatched neighbors remain unmatched
and are also removed. In addition to random matching
(RM) (Hendrickson and Leland, 1995), where vertices
arematched with random neighbors, we proposeand have
tested three matching algorithms.

“The matching part of the multilevel
strategy can be easily modified in several
ways to take AR into account, and in each
casethe vertices are visited (at most once)
using a randomly ordered linked list.”
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(b) cost matching

Fig. 2 Surface (a) and cost (b) matching

Surface Matching (SM). Aswe have seenin Section
2.3, the AR partitioning problem can be approximated by
the cut-edge weight problem using (4), the I" ; cost func-
tion, and so the simplest matchingisto usethe heavy edge
approach of Karypis and Kumar (1995a), where the ver-
tex matches across the heaviest edge to any of its un-
matched neighbors. Thisis the same as matching across
thelargest surface (since here edge wei ghtsrepresent sur-
faces), and we refer to this as surface matching.

Template Cost Matching (TCM). A second ap-
proach follows the ideas of Bouhmala (1998) and
matches vertices with the neighbor that minimizes the
given cost function. In this case, the chosen vertex
matcheswith the unmatched neighbor which givesthere-
sulting cluster the best aspect ratio. Using the I', cost
function, we refer to this as template cost matching.

Surface Cost Matching (SCM). Thisisthesameidea
as TCM only using the I cost function, (4), which is
faster to calculate and matches avertex with the neighbor
that minimizes the surface of the resulting cluster.

Figure 2 motivates the difference between surface
matching (SM) and cost matching (SCM and TCM). For
surface matching, the graph vertex corresponding to e,
matches across the largest surface area, in this case with
e,. For cost matching, the graph vertex corresponding to
e, matchesto minimize the aspect ratio (TCM) or surface
area (SCM) of the resulting cluster, in this case with e,.

3.3 RESULTS FOR DIFFERENT
MATCHING FUNCTIONS

In Tables 3, 4, and 5, we compare the resultsin Table 2,
where SM was used, with RM, SCM, and TCM, respec-
tively. In al cases, the LTGTC optimization algorithm
(see Section 4.3) was used. For each value of P, the first

Table 3
Random Matching Results Compared with Surface Matching
P=16 P =32 P =64 P =128

Mesh r MNRM)-1 ! rRM)-1 r MNRM)-1 t rrRM)-1

r(sm)-1 r(sv)-1 r(sm)-1 r(sv)-1
uk 1.65 1.05 1.49 1.06 1.40 1.01 1.39 0.98
4elt-dual 1.29 1.20 1.30 1.09 1.29 1.05 1.29 1.02
t60k 1.36 1.08 1.36 1.26 1.36 1.19 1.37 1.20
dime20 1.45 1.05 1.39 1.16 1.39 1.29 1.35 1.33
cs4 1.58 1.24 1.52 1.12 1.55 1.17 1.53 1.10
wing 1.44 1.17 1.44 1.12 1.44 1.08 1.46 1.07
mesh100 1.59 1.10 1.52 1.05 1.53 1.08 1.57 1.13
cyl3 1.53 111 1.52 1.00 1.59 1.14 1.56 1.10
Average 1.12 1.11 1.13 1.12




Table 4

Surface Cost Matching Results Compared with Surface Matching

P =16 P P =64 P =128
Mesh r(scm)-1 r(scm)-1 r(scm)-1 r(scm)-1
' r(sm)-1 ' r(sm)-1 ' r(sm)-1 ' r(sm)-1
uk 1.61 0.98 1.48 1.05 1.39 0.97 1.39 0.99
4elt-dual 1.26 1.09 1.25 0.90 1.26 0.97 1.28 0.98
t60k 1.30 0.90 1.25 0.88 131 1.03 131 1.01
dime20 1.38 0.88 1.34 0.99 1.30 1.01 1.28 1.07
cs4 1.50 1.06 1.52 1.12 151 1.07 151 1.07
wing 141 1.10 1.42 1.07 142 1.02 1.42 0.99
mesh100 1.55 1.02 1.55 1.11 152 1.06 1.52 1.04
cyl3 151 1.08 1.50 0.95 1.54 1.03 1.55 1.08
Average 1.01 1.01 1.02 1.03
Table 5
Template Cost Matching Results Compared with Surface Matching
P=16 P=32 P =64 P =128

r(Tcm)-1 r(Tem)-1 r(Tcm)-1 r(Tem)-1
Mesh r, _ \ _ \ _ r, —_

r(sv)-1 r(sv)-1 r(sm)-1 r(sv)-1
uk 1.65 1.04 1.48 1.05 141 1.03 1.39 0.99
4elt-dual 1.26 1.08 1.28 0.99 1.28 1.03 1.27 0.94
t60k 1.29 0.87 1.31 1.09 1.29 0.96 1.31 1.02
dime20 1.39 0.90 1.34 1.00 1.28 0.92 1.28 1.07
cs4 1.49 1.04 1.47 1.01 1.50 1.05 1.50 1.04
wing 141 1.09 141 1.04 141 1.00 1.42 0.98
mesh100 1.48 0.89 1.47 0.96 151 1.03 151 1.03
cyl3 1.49 1.04 1.50 0.95 1.53 1.03 1.52 1.03
Average 0.99 1.01 1.01 1.01

column shows the average AR, I, of the partitioning.
The second column for each value of P then comparesre-
sultswith thosein Table2 using the metri cML for
r(sv)-1
RM and so forth. Thus, a figure > 1 means that RM has
produced worse results than SM. These comparisons are
then averaged and so it can be seen, for example, for P =
16that RM producesresults12% (1.12) worseon average
than SM. Indeed, RM is better than SM in only one case
(“uk,” P=128) and upto 33% worse (“dime20,” P=128),
withtheoverall average quality 12% worsethan SM. This
isnot altogether surprising sincethe AR of elementsinthe
coarsest graph can be very poor if the matching takes no
account of it, and hence the optimization hasto work with
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Fig. 3 Final “element” shapes for random (a) and surface
(b) matching

badly shaped elements. This limitation is graphically
demonstrated in Figure 3, which shows an exampl e of the
shapes of the final 16 clustersin the coarsest graph of an
example2-D mesh. Whilethe shapesfor SM (3b) arevery
good (although the borders are somewhat irregular), the
shapesfor RM (3a) areextremely poor, and asaresult, the
partition optimization on the coarser graphsis limited in
the improvements that can be made.

When it comesto comparing SM with SCM and TCM
(Tables 4 and 5), there is actually very little difference;
SCM is about 1.9% worse on average and TCM only
about 0.6% worse. This suggeststhat the multilevel strat-
egy is relatively robust to the matching algorithm, pro-
vided the AR istaken into account in some way.

With regard to partitioning time, RM was on average
about 32.9% slower than SM; as explained above, thisis
because the optimization isinhibited by the poor quality
of the coarser graph and thus took considerably longer.
SCM and TCM were about 14.3% and 8.5% slower than
SM, respectively; thisisdueto the slightly slower match-
ing process. However, the multilevel partitioning is gen-
eraly very fast, and any of the intelligent matching algo-
rithms (as opposed to random matching) do not add
significantly to the optimization time.

Overall, this suggests that SM is the algorithm of
choice, although there islittle benefit over TCM.

4 TheKernighan-Lin
Optimization Algorithm

In thissection, wediscussthekey featuresof an optimiza-
tion agorithm, fully described in Walshaw and Cross
(1998) and then in Section 4.3 describe how it can be
modified to optimize for AR. It isaKernighan-Lin (KL)
type agorithm incorporating a hill-climbing mechanism
to enable it to escape from local minima. The algorithm
uses bucket sorting (Section 4.5), the linear time com-
plexity improvement of Fiducciaand Mattheyses (1982),
and is a partition optimization formulation. In other
words, it optimizes a partition of P subdomains rather
than a bisection.

4.1 THE GAIN FUNCTION

A key concept in the method isthe idea of gain. Thegain
g(v, q) of avertex vin subdomain S can be cal cul ated for
every other subdomain, S, g# p, and expresses how much
the cost of agiven partition would be improved were v to
migrateto S, Thus, if Ttdenotes the current partition and
T the partition if v migratesto S, then for a cost function
I, thegain g(v,q)=T (1) — I (7). Assuming the migra-



tionof vonly affectsthecost of S and S, (asistruefor I,
and T ), then we get

g(v,9)=AR(S,)— AR(S, + V) + AR(S,)

~AR(S, - V) ©
For I',, this gives an expression
lF 05, _ ofs,+v} 1|
Grempae(V:) = éi iQSqa)Sp (Q{?{J;:}_)V} i (®)
[ (@s)" (ofs,-v)" ]

which cannot be further simplified. However, for I,
since

AR(S,)— AR(S, + V)= Ki{aisq —3'(S,+V)}

= Ki{aisq —(9'S, +a'v=2(S,, v)|)}

1 i
= E{a(sq,v»— a'vh,

where|($S, , v)| denotes the sum of edge weights between
S, and v, we get

SO R (ORI S

Noticein particular that g, iSthe sameasthe cut-edge
weight gain function and that it isentirely localized (i.e.,
the gain of a vertex only depends on the length of its
boundaries with a subdomain and not on any intrinsic
qualities of the subdomain that could be changed by non-
local migration).

4.2 THE ITERATIVE
OPTIMIZATION ALGORITHM

Theiterative optimization algorithm hasbeen specifically
constructed to exploit the flexibility inherent in the multi-
level paradigm and usesimbalance in the coarser graphs
to enhance the final partition quality. More specifically,
by allowing a large imbalance in the coarsest graphs, a
better partition may be found than if balance is rigidly
enforced, and by removing this imbalance gradually
throughout the multilevel procedure, this quality is not
degraded. To this end, the optimization defines a balanc-
ing schedule—that is, anincreasing series of target subdo-

“Theiterative optimization algorithm has
been specifically constructed to exploit the
flexibility inherent in the multilevel
paradigm and usesimbalancein the
coarser graphsto enhance the final
partition quality.”



mainweights, T, onefor each graph G.. If every subdomain,
S, isnot heavier than thistarget (i.e., max|S,|< T, ), then
we say that the graph is sufficiently balanced, and the op-
timization can concentrate on refinement alone(aslong as
the balance is not destroyed). However, if max|S |>T,,
then the optimization must concentrate on balancing
(with some regard to refinement), and thisis achieved by
determining a balancing flow—that is, a schedule of
weight to be transferred, F_,, between every pair of adja-
cent subdomains, S and S, whichwill balance the subdo-
main weights. VVarious balancing schedul es, together with
an algorithm due to Hu, Blake, and Emerson (1998) for
determining abalancing flow, are fully described in Wal-
shaw and Cross (1998). Here we use the most successful
balancing schedule from that paper and set T, =6, S,
whereS= [ |V|/P] isjust the optimal subdomain weight
(see Section 2.1), and

where N, _; isthe number of verticesinG, _,, the parent
graph of G,. In other words, agraph G, is considered bal-

1
P
)zfor
Nl—l
| >0.

The iterative optimization algorithm, asis typical for
KL-type algorithms, has inner and outer iterative loops,
with the outer loop terminating when no migration takes
place during an inner loop. The optimization uses two
bucket-sorting structures or bucket trees (see Section 4.5)
andisinitialized by calculating thegainfor all border ver-
ticesandinserting theminto one of thebucket trees. These
verticeswill subsequently bereferred to as candidate ver-
tices and the tree containing them as the candidate tree.

Theinner loop proceeds by examining candidate verti-
ces, highest gainfirst (by alwayspicking verticesfromthe
highest ranked bucket), testing whether the vertex is ac-
ceptable for migration (see below), and then transferring
it to the other bucket tree (the tree of examined vertices).
This inner loop terminates when the candidate tree is
empty, although it may terminateearly if the partition cost
(i.e., the average aspect ratio) risestoo far above the cost
of the best partition found so far. Once the inner loop has
terminated, any vertices remaining in the candidate tree
are transferred to the examined tree, and finally pointers
to the two trees are swapped ready for the next pass
through the inner [oop.

anced if theimbalanceislessthan®, =1+2(

Migration Acceptance. Let T refer to the target
weight for the graph and W represent the weight of the
largest subdomain, W =max,|S,| If the required flow
from subdomain S, to subdomain S, is F,,, a candidate
vertex v with weight |v| (> 0) is acceptable for migration
from § to S, (with weights|S, |and|S, ) if

(@ W>Tand 2F, > |v|
8

or
(b)WsTand|g)+M<T.

These criteria reflect the aim of trying to balance the
graph down to the target weight, T, and then keeping it
there. If the graph is not yet within the imbalance toler-
ance(i.e.,, W>T), then (8a) only allowsmigration, which
reducesthe required flow. Condition (8b) guaranteesthat
oncebalanceisachieved, the graph cannot becomeunbal -
anced again.

Migration Confirmation. The algorithm also uses a
KL-typehill-climbing strategy. | n other words, vertex mi-
gration from subdomain to subdomain can be accepted
evenif it degradesthe partition quality and later, based on
the subsequent evolution of the partition, either rejected
or confirmed. During each pass through the inner loop, a
record of the best partition achieved by migration within
that loop is maintained together with alist of verticesthat
have migrated sincethat valuewasattained. If subsequent
migration finds a“ better” partition, then the migrationis
confirmed, and thelist isreset. Oncetheinner loop ister-
minated, any verticesremaininginthelist (verticeswhose
migration has not been confirmed) are migrated back to
the subdomains they came from when the optimal cost
was attained.

To define a “better” partition, let Tt represent the best
partition reached so far and Tt the subsequent partition
after some migration (i.e., after someiterations of thein-
ner loop). Each partition has a cost associated with it,
C(m), and animbalancethat depends onW (1), theweight
of thelargest subdomaininthat partition. Again, let T rep-
resent the target weight for the graph. Denoting C(1T')
andW(Tt' )by C' andW' (and similarly for i), then ' is
confirmed as anew optimal partition if

(@C'<C
or

(b)C'=C andW' <W )
or

©T=W' <W.



Condition (9c) simply statesthat whilethe graphisunbal-
anced (i.e., W' >T), any partition that improves the bal-
anceisconfirmed. Conditions(9a) and (9b) aremoretypi-
cal of KL-type algorithms and confirm any partition that
either improves on the optimal cost (9a) or improves on
the optimal balance without raising the cost (9b).

4.3 INCORPORATING THE
ASPECT RATIO: LOCALIZATION

One of the advantages of using cut-edge weight as a cost
function isitslocalized nature. When a graph vertex mi-
grates from one subdomain to another, only the gains of
adjacent vertices are affected. In contrast, when using the
graphtooptimize AR, if avertex vmigratesfrom S to S,
the volume and surface of both subdomains will change.
This, in turn, means that when using the template cost
function (2), the gain of all border vertices both within
and abutting subdomains S, and S, will change. Strictly
speaking, al these gains should be adjusted with the huge
disadvantage that this may involve thousands of floating-
point operations and hence be prohibitively expensive.
We have tested (see Table 8) a version that includes full
updating but, as aternatives, we propose three localized
variants.

Surface Gain/Surface Cost (SGSC). The simplest
way to localizethe updating of the gainsisto maketheas-
sumption in Section 2.2 that the subdomains all have ap-
proximately equal volume and to use the surface cost
function ' from (4). As mentioned in Section 2.3, the
problem immediately reduces to the cut-edge weight
problem, albeit with non-integer edge weights, and from
(7) only the gains of the vertices adjacent to the migrating
vertex will need updating. However, if thisassumptionis
not true, it isnot clear how well " ; will optimizethe AR,
and below we provide some experimental results.

Surface Gain/Template Cost (SGTC). The second
method we propose for localizing the updates of gain re-
lies on the observation that the gain is simply used as a
method of rating the vertices so that the algorithm always
visitsthose with highest gain first (using the bucket sort).
Itisnot clear how crucial thisratingistothe successof the
algorithm, and indeed Karypis and Kumar (1995b) dem-
onstrated that (at least when optimizing for cut-edge
weight) almost as good results can be achieved by simply
visiting the vertices in random order. We therefore pro-
pose approximating the gain with the surface cost func-
tion ", from (4) to rate the vertices and store them in the
bucket tree structure but using the template cost function
I", from (2) to assessthe changein cost when actually mi-
grating a vertex. Thislocalizes the gain function.

Local Template Gain/Template Cost (LTGTC). A
third possibility we proposeisto actually usethetemplate
cost function, I",, for adjusting the gain but only adjusting
the gain of those vertices adjacent to the migrating vertex.
The motivation isthat the neighbors of the migrating ver-
tex are likely to have large changes in gain, whereas the
gains of other vertices are likely to only change margin-
aly (sincethey are only affected by the changein volume
and surface of subdomains). The disadvantageisthat the
gains will become progressively more and more inaccu-
rate asthe optimization progresses; however, they arestill
likely to be as accurate as using the surface cost.

Finally note that the implementation, which, when a
vertex migratesfrom subdomain §;to S, involvesfull up-
dating of the gains of all vertices in and adjacent to the
borders of S, and S, is referred to as template gain/tem-
plate cost (TGTC).

4.4 RESULTS FOR DIFFERENT
OPTIMIZATION FUNCTIONS

Tables 6 and 7 compare SGSC and SGTC optimization
against the LTGTC results from Table 2. Both sets of re-
sults use surface matching (SM). The tables are in the
same form as those in Section 3.3 and show that on aver-
age the surface gain function provides results that are
12.2% (SGSC) and 14.1% (SGTC) worse than LTGTC.
Note that in earlier results (Walshaw et al., 1998), we
concluded that SGTC was the algorithm of choice, and
the reason for this discrepancy is explained in the test
meshes used. In Walshaw et al. (1998), we did not usethe
“4elt-dual” and “wing”’ meshes, which contain the high-
est mesh grading (theratio of thelargest surface of anele-
ment to the smallest), respectively, 2.13e+4 and 1.08e+6.
Looking at the results in more detail, then, “4elt-dual”
gives average aspect ratios between 31% and 79% worse
than LTGTC, while“wing” rangesbetween 46% and 74%
worse. These heavily influence the average results, and
thereason webelievethisto happenisthat theapproxima-
tion (3) madein Section 2.2, that every subdomain has ap-
proximately equal volume, completely breaks down for
mesheswith very high gradings. For all the other meshes,
the SGSC and SGTC optimizations give average ARs
from 20% better to 17% worsethan LTGTC. Infact, if we
exclude the “4elt-dual” and “wing” meshes from the re-
sults, on average, SGSCis 1.40% better than LTGTC, and
SGTC is 0.36% worse. This|eads us to suggest that as a
very rough “ballpark” figure, if the mesh gradingisof the
order 10° or less, the surface gain function provides per-
fectly good results, but if greater than this, a more accu-



Table 6

Surface Gain/Surface Cost Optimization Compared with Local Template Gain/Template Cost

P=16 P=32 P=64 P =128

Mesh M(SGsC)—-1 M(sGsC)-1 r M(SGsC)—-1 r I(SGsC)—-1

! rLTGTC)-1 ' rLTGTC)—1 ' [(LTGTC)-1 ' [(LTGTC)-1
uk 1.67 1.07 1.47 1.02 1.38 0.97 141 1.03
4elt-dual 1.35 1.47 1.42 1.52 1.36 1.33 1.38 1.32
t60k 1.27 0.79 1.25 0.87 1.30 1.01 1.27 0.88
dime20 1.36 0.84 1.34 1.00 1.28 0.92 1.26 1.01
cs4 1.48 1.03 1.51 1.10 1.50 1.06 1.50 1.04
wing 1.75 2.01 1.63 1.59 1.65 1.59 1.61 1.42
mesh100 1.48 0.90 1.48 0.97 151 1.04 1.52 1.04
cyl3 1.49 1.04 1.52 0.99 1.52 1.00 1.53 1.04
Average 1.14 1.13 1.12 1.10
Table 7
Surface Gain/Template Cost Optimization Compared with Local Template Gain/Template Cost

P =16 P=32 P=64 P =128

Mesh I(SGsC)-1 r(sGsC)-1 r M(SGsC)-1 r r(sGsC)—-1

! rLTGTC) -1 ' rLTGTC)-1 ' T[(LTGTC)-1 ' T(LTGTC)-1
uk 1.62 1.00 1.50 1.08 141 1.03 1.40 1.00
4elt-dual 1.43 1.79 142 1.50 1.37 1.36 1.38 131
t60k 1.30 0.90 1.25 0.90 1.29 0.95 1.27 0.87
dime20 1.35 0.82 1.33 0.98 1.30 0.98 1.30 1.17
cs4 1.53 1.15 1.49 1.05 1.51 1.08 1.50 1.04
wing 1.65 1.74 1.65 1.65 1.66 1.62 1.63 1.46
mesh100 1.48 0.91 1.48 0.97 1.52 1.05 1.50 1.01
cyl3 1.52 1.10 1.52 0.99 1.53 1.03 1.52 1.02
Average 1.18 1.14 1.14 1.11

rate estimate of gainisnecessary and LTGTC isto bepre-
ferred.

Table8 compares TGTC optimization, theversion that
uses full updating of gains, with LTGTC and shows that
onaverageLTGTCand TGTC giveresultsthat areamost
equivalent in quality (TGTC isin fact 0.50% worse than
LTGTC) and hencethat LTGTC providesavery good ap-
proximation to TGTC.

Again, we are not primarily concerned with partition-
ing times, but it was interesting to note that SGSC and
SGTC were on average 28.41% and 24.38% faster than
LTGTC. Thisis because the surface cost function, I'_, is
much quicker to cal culate when assessing or updating the

d-1

gains(sinceit does not involve calculating SpT ). TGTC



Table 8
Template Gain/Template Cost Optimization Compared with Local Template Gain/Template Cost

P=16 P=32 P=64 P =128
Mesh rPero-1 raero-1 r(TGTC)—-1 r(TGTC)-1
! rLTGTC)—-1 ' rLTGTC)-1 ' T(LTGTC)-1 ' [(LTGTC)-1
uk 1.64 1.04 1.49 1.06 1.38 0.95 1.38 0.96
4elt-dual 1.23 0.98 1.27 0.96 1.28 1.01 1.28 0.96
t60k 1.33 1.00 1.28 0.98 1.31 1.03 1.31 1.01
dime20 1.39 0.91 1.34 1.01 1.29 0.95 1.29 1.13
cs4 1.48 1.04 1.49 1.04 1.48 1.01 1.49 1.01
wing 1.38 1.01 1.41 1.04 1.41 1.00 1.44 1.02
mesh100 1.52 0.97 1.50 1.01 1.50 1.01 1.51 1.02
cyl3 1.48 1.02 1.51 0.98 1.52 1.01 1.52 1.02
Average 0.99 1.01 1.00 1.02

was more than 50 times slower on average than LTGTC,
and wefeel that thisjustifiesthe assertion that full updat-
ing of gainsistoo expensive.

4.5 INCORPORATING THE ASPECT
RATIO: BUCKET SORTING WITH
NON-INTEGER GAINS

The bucket sort is an essential tool for the efficient and
rapid sorting and adjustment of verticesby their gain. The
concept was first suggested by Fiduccia and Mattheyses
(1982), andtheideaisthat all verticesof agivengaingare
placed together in an unsorted “bucket,” which isranked
g. Finding avertex with maximum gain then simply con-
sists of finding the (nonempty) bucket with the highest
rank and picking a vertex from it. If the vertex is subse-
quently migrated from one subdomainto another, thenthe
gains of any affected vertices have to be adjusted and the
list of verticesthat are candidatesfor migration (re)sorted
by gain. Using a bucket sort for this operation simply re-
quires recalculating the gains of affected vertices and
transferring them to the appropriate buckets. If a bucket
sort werenot used and theverticesweresimply storedina
list in gain order, then the entirelist would require resort-
ing (or at least merge sorting with the sorted list of ad-
justed vertices), an essentially O(N) operation for every
migration.

The implementation of the bucket sort is fully de-
scribed in (Walshaw and Cross, 1998). It includes a rank-
ing for prioritizing verticesfor migration, whichincorpo-
rates their weight as well as their gain. The nonempty
bucketsare stored in abinary treeto save excessive mem-



ory use (sincewe do not know apriori how many buckets
will be needed), and thisstructureisreferred to aboveasa
bucket tree.

The only difficulty in adapting this procedure to AR
optimization is that with non-integer edge weights, the
gainsare also real non-integer numbers. Thisisnot ama-
jor probleminitself aswecanjust givebucketsaninterval
of gains rather than a single integer—that is, the bucket
ranked 1 could contain any vertex with gainintheinterval
[0.5, 1.5). However, theissue of scaling then arises since,
if using the surface gain function I ; (SGSC and SGTC),
for amesh entirely contained within the unit square/cube,
all the vertices are likely to end up in one of two buckets
(dependent only onwhether they have positiveor negative
gains). Fortunately, we can easily calcul ate the maximum
possible gain when using I, which would occur if the
vertex with the largest surface, v O S, for example, were
entirely surrounded by neighbors in S, The maximum
possible gain is then 2max, ., dv (strictly speaking,
2max,c, 0'v), and similarly the minimum gain is
—2maX,c, dV. This means we can easily choose the
number of buckets—B, for example—and scale the gain
accordingly sothat for again g, wecal cul ate the appropri-
ate bucket by finding the integer part of

__ %
4max ., oV

Ifusingl™, asagainfunction (LTGTCand TGTC), wecan
approximatethemaximumgain (usingI" ) to get the same
scaling, although then the actual number of buckets used
only approximates B. For either I, or I",, a problem still
arisesfor mesheswith ahigh grading because many of the
elementswill haveaninsignificant surface areacompared
to the maximum and hence be contained in a small
number of buckets centered around 0. However, the ex-
perimentscarried out hereall used ascalingthat alloweda
maximum of B = 1000 buckets, and we havetested the al-
gorithm up to B = 10,000 bucketswithout significant pen-
alty in terms either of memory or runtime. We have also
tested the algorithm with B = 100, although with a 4.8%
average deterioration in the resullts.

5 Discussion and Conclusions

5.1 COMPARISON WITH
CUT-EDGE WEIGHT PARTITIONING

In Table 9, we compare AR as produced by the edge-cut
version of JOSTLE (EC) describedin Wal shaw and Cross
(1998) with the results from Table 2. The EC partitioner

never produces average aspect ratiosthat are actually bet-
ter than the AR partitioner and, on average, gives results
that are 19.8% worse than those of the AR partitioner and
can be up to 61% worse. Notice that thereisno real con-
sistency inthe differences, however (asthereisin the dif-
ferences between SGSC and SGTC compared with
LTGTC; see Section 4.4), and we conclude that although
an EC partitioner might be expected to produce reasona-
bly good AR results (since apartition with alow value of
|E.|islikely to have compact and therefore well-shaped
subdomains), targeting the cost function on AR can pro-
vide considerably better resultsin most cases.

Meanwhile, in Table 10, we compare the edge cut pro-
duced by the EC version of JOSTLE with that of the AR
version. As might be expected, EC partitioning produces
the best results (about 14.4% better than AR). Notice, in
particular, theresultsfor the“wing” mesh (the mesh with
the highest grading), where the EC partitioner produces
partitions with up to 50% fewer cut edges than the AR
partitioner, but the AR partitioner produces subdomains
with aspect ratios 23% to 61% better. This demonstrates
that agood partition for the aspect ratio is not necessarily
agood partition for edge cut and vice versa.

In terms of time, the EC partitioner is about two times
faster than AR on average. Again, thisisno surprisesince
the AR partitioning involves floating-point operations
(assessing cost and combining elements), while EC parti-
tioning only requires integer operations. However, both
are extremely fast at producing high-quality partitions.

5.2 GENERIC MULTILEVEL
MESH PARTITIONING

In this paper, we have adapted a mesh-partitioning tech-
nique originally designed to solve the edge-cut partition-
ing problemto adifferent cost function. Thequestionthen
arises, Isthe multilevel strategy an appropriate technique
for solving partitioning problems (or indeed other optimi-
zation problems) with different cost functions? Clearly,
thisis an impossible question to answer in general, but a
few pertinent remarks can be made:

» For the AR-based cost functions at least, the method
seems relatively sensitive to whether the cost is in-
cluded in the matching. This suggeststhat, if possible,
a generic multilevel partitioner should use the cost
function to minimize the cost of the matchings. Note,
however, that this may not be possible since a cost
functionthat, say, measured the cost of amapping onto
a particular processor topology would be unable to



Table 9
AR Results for the Edge-Cut Partitioner Compared with the AR Partitioner

P =16 P=32 P=64 P =128

rEec) -1 rEec)-1 rNEec) -1 rEec)-1
Mesh I, e \ _— \ _— \ —_—

NAR)-1 NAR)-1 NAR)-1 NAR)-1
uk 1.68 1.10 1.55 1.19 1.46 1.15 141 1.04
4elt-dual 1.32 1.33 1.28 1.01 1.29 1.06 1.29 1.01
t60k 1.38 1.13 1.31 1.09 1.33 1.09 1.32 1.02
dime20 1.50 1.17 1.45 1.33 1.40 1.33 1.38 1.45
cs4 1.52 1.12 1.54 1.15 1.53 1.12 151 1.05
wing 1.60 161 1.61 1.53 161 1.50 1.53 1.23
mesh100 1.55 1.03 1.60 1.22 161 1.24 1.61 121
cyl3 1.59 1.25 1.63 1.21 1.61 1.18 1.59 1.17
Average 1.22 1.22 1.21 1.15
Table 10
|E.| Results for the Edge-Cut Partitioner Compared with the AR Partitioner

P =16 P=32 P=64 P =128

Mesh | EIEO) g, EIEC) g, IEIEQ) g [EIES)

|E.I(AR) |E.|(AR) |E.I(AR) |E|(AR)
uk 182 0.92 305 0.92 512 0.92 809 0.86
4elt-dual 602 0.67 902 0.66 1515 0.76 2364 0.86
t60k 1016 0.99 1552 0.97 2439 0.97 3624 0.95
dime20 1382 0.73 2368 0.82 3717 0.80 5540 0.82
cs4 2496 0.95 3501 0.96 4666 0.93 6077 0.92
wing 5008 0.54 6866 0.50 9401 0.60 11,877 0.70
mesh100 4782 0.79 7851 0.93 11,100 0.96 15,202 0.95
cyl3 11,377 1.04 16,783 1.02 22,369 1.00 29,432 0.98
Average 0.83 0.85 0.87 0.88

function since at the matching stage no partition, and
hence no mapping, exists.

» Theoptimizationrelies, for efficiency at least, on hav-
ing alocal gain function so that the migration of aver-
tex doesnot involve an O(N/P) or evenan O(N) update.
Herewewere abletolocalize the updating of gainsei-
ther by (a) making asimple approximation to localize
the cost function or (b) by just ignoring the updating of
nonadjacent vertices. However, itisnot clear that (a) is
alwayspossibleor that (b) isalwaysvalid. Onthe other
hand, theunderlying approachin (a), which essentially
decouples the gain from the cost, does look quite
promising for more general cost functions. In other



words, we can use a local (and possibly crude) ap-
proximation for the gain function and then control the
convergence/hill climbing of the KL method (Ker-
nighanand Lin, 1970) withthetruecost. In someways,
this could be regarded as a hybrid of the KL method
and simulated annealing (SA) (Kirkpatrick, Gelatt,
and Vecchi, 1983) becausein somewaysyou could re-
gard SA asKL with arandom gain function. Thiscon-
cept of decoupling thegain and cost functionsispart of
our ongoing research.

» Thebucket sort isreasonably simpleto convert to non-
integer gains, but the processrelieson being ableto es-
timatethemaximum gain. If thisisnot possible, it may
not be easy to generate a good scaling that separates
vertices of different gains into different buckets.

5.3 CONCLUSION AND FUTURE RESEARCH

We have shown that the multilevel strategy can be modi-
fied to optimize for the aspect ratio. In Section 2, we gave
a definition of aspect ratio and showed how the graph
could bemodifiedto take AR into account. In Section 3.2,
we described three matching algorithms (modifications
of those already in the literature) that can be used to take
AR into account and in Section 3.3 concluded that if itis
not taken into account (i.e., random matching), the same
quality of results cannot be expected. In Section 4.3, we
described four ways of incorporating AR into aK L-based
optimization algorithm. Wethen demonstrated in Section
4.4 that we can approximate the cost function to localize
the updating of gains reasonably successfully, provided
that the mesh grading is not too high. Weal so showed that
wecan alsolocalizethe updating of gainsby justignoring
nonadjacent vertices and concluded that full updating of
gains does not provide any significant advantages (and
costs alot more). We also described, in Section 4.5, how
to use the bucket sorting of Fiduccia and Mattheyses
(1982) for non-integer gains. Finally, in Section 5.1, we
showed that partitionswith good subdomain aspect ratios
can vary greatly from those with alow edge cut.
Tofully validate the method, it would be interesting to
measure the correlation between the definition of aspect
ratio used here and convergence in the solver and verify
that it does indeed provide the benefits for DD precondi-
tioners that other researchers, using different definitions
of aspect ratio, suggest (e.g., Farhat, Maman, and Brown,
1995; Vanderstraeten et al., 1996). It would also beinter-
esting to extend theideastoinvesti gatethe shaping of sub-
domainsto reflect anisotropic behavior. Finaly, although
aparallel version of JOSTLE exists(e.g., Walshaw, Cross,
and Everett, 1997), it is not clear how well AR optimiza-

tion, with itsmore global cost function, will work in par-
allel, and this is another direction for future research.
Some related work on AR optimization already existsin
the context of aparallel dynamic adaptive mesh environ-
ment (Diekmann, Meyer, and Monien, 1998; Diekmann,
Schlimbach, and Walshaw, 1998; Schlimbach, 1998), but
none of this work involves multilevel methods, so the
question gtill arises whether parallel multilevel tech-
nigques can help in the optimization.
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NOTE

1. Diekmann, Meyer, and Monien (1998) and Diekmann, Schlimbach,
and Walshaw (1998) suggest the value of 1.40 using the square/cube-
based definition of AR in Section 2.2—this is equivalent to 1.57 using the
circle/sphere-based definition.
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