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Summary

Mul ti level al go rithms are a suc cess ful class of op ti mi za tion 
tech niques that ad dress the mesh par ti tion ing prob lem for
map ping meshes onto par al lel com put ers. They usu ally
com bine a graph con trac tion al go rithm to gether with a lo -
cal op ti mi za tion method that re fines the par ti tion at each
graph level. To date, these al go rithms have been used al -
most ex clu sively to mini mize the cut- edge weight in the
graph with the aim of mini miz ing the par al lel com mu ni ca -
tion over head. How ever, it has been shown that for cer tain
classes of prob lems, the con ver gence of the un der ly ing
so lu tion al go rithm is strongly in flu enced by the shape or
as pect ra tio of the sub do mains. There fore, in this pa per,
the authors mod ify the mul ti level al go rithms to op ti mize a
cost func tion based on the as pect ra tio. Sev eral vari ants of
the al go rithms are tested and shown to pro vide ex cel lent
re sults.

1 Introduction

The need for mesh par ti tion ing arises natu rally in many
fi nite ele ment (FE) and fi nite vol ume (FV) ap pli ca tions.
Meshes com posed of ele ments such as tri an gles or tet ra -
he dra are of ten bet ter suited than regu larly struc tured
grids for rep re sent ing com pletely gen eral geo me tries and
re solv ing wide varia tions in be hav ior via vari able mesh
den si ties. Mean while, the mod el ing of com plex be hav ior
pat terns means that the prob lems are of ten too large to fit
onto se rial com put ers, ei ther be cause of mem ory limi ta -
tions or com pu ta tional de mands or both. Dis trib ut ing the
mesh across a par al lel com puter so that the com pu ta tional 
load is evenly bal anced and the data lo cal ity maxi mized is 
known as mesh par ti tion ing. It is well known that this
prob lem is NP- complete, so in re cent years much at ten -
tion has been fo cused on de vel op ing suit able heu ris tics,
and some pow er ful meth ods, many based on a graph cor -
re spond ing to the com mu ni ca tion re quire ments of the
mesh, have been de vised (e.g., Hen drick son and Le land,
1995).

A par ticu larly popu lar and suc cess ful class of al go -
rithms that ad dress this mesh- partitioning prob lem is
known as mul ti level al go rithms.

They usu ally com bine a graph con trac tion al go rithm,
which cre ates a se ries of pro gres sively smaller and
coarser graphs to gether with a lo cal op ti mi za tion method
that, start ing with the coars est graph, re fines the par ti tion
at each graph level. To date, these al go rithms have been
used al most ex clu sively to mini mize the cut- edge weight,
a cost that ap proxi mates the to tal com mu ni ca tions vol -
ume in the un der ly ing solver. This is an im por tant goal in
any par al lel ap pli ca tion in order to mini mize the com mu -
ni ca tions over head, but it has been shown (Van der strae -
ten, Ke un ings, and Far hat, 1995) that for cer tain classes of 
so lu tion al go rithm, the con ver gence of the solver is ac tu -
ally heav ily in flu enced by the shape or as pect ra tio (AR)
of the sub do mains. In this case, the over all so lu tion time
can be more de pend ent on the number of it era tions than
on the par al lel com mu ni ca tions over head (Van der strae -
ten et al., 1996). In this pa per, there fore, we mod ify the
mul ti level al go rithms (the match ing and lo cal op ti mi za -
tion) to op ti mize a cost func tion based on AR. We also ab -
stract the pro cess of modi fi ca tion to sug gest how the mul -
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ti level strat egy can be modi fied into a ge neric tech nique
that can op ti mize ar bi trary cost func tions.

1.1 DOMAIN DECOMPOSITION
PRECONDITIONERS AND ASPECT RATIO

To mo ti vate the need for as pect ra tio op ti mi za tion, we
con sider the re quire ments of a class of so lu tion tech -
niques. A natu ral par al lel so lu tion strat egy for the un der -
ly ing prob lem is to use an it era tive solver such as the con -
ju gate gra di ent (CG) al go rithm to gether with do main
de com po si tion (DD) pre con di tion ing (e.g., Blazy,
Borchers, and Dralle, 1995). DD meth ods take ad van tage
of the par ti tion of the mesh into sub do mains by im pos ing
ar ti fi cial bound ary con di tions on the sub do main bounda -
ries and solv ing the origi nal prob lem on these sub do -
mains (Bram ble, Pas ciac, and Schatz, 1986). The sub do -
main so lu tions are in de pend ent of each other and thus can
be de ter mined in par al lel with out any com mu ni ca tion be -
tween proc es sors. In a sec ond step, an “in ter face” prob -
lem is solved on the in ner bounda ries, which de pends on
the jump of the sub do main so lu tions over the bounda ries.
This in ter face prob lem gives new con di tions on the in ner
bounda ries for the next step of the sub do main so lu tion.
Add ing the re sults of the third step to the first gives the
new con ju gate search di rec tion in the CG al go rithm.

The time needed by such a pre con di tioned CG solver is 
de ter mined by two fac tors, the maxi mum time needed by
any of the sub do main so lu tions and the number of it era -
tions of the global CG. Both are at least par tially de ter -
mined by the shape of the sub do mains. While an al go -
rithm such as the mul ti grid method as the solver on the
sub do mains is rela tively ro bust against shape, the number
of global it era tions is heav ily in flu enced by the AR of
sub do mains (Van der strae ten et al., 1996). Es sen tially, the
sub do mains can be viewed as ele ments of the in ter face
prob lem (Far hat, Ma man, and Brown, 1995; Far hat, Man -
del, and Roux, 1994), and just as with the nor mal fi nite
ele ment method, in which the con di tion of the ma trix sys -
tem is de ter mined by the AR of ele ments, the con di tion of
the pre con di tion ing ma trix is here de pend ent on the AR of 
sub do mains.

1.2 RELATED WORK

The idea of op ti miz ing AR to main tain scal abil ity in the
solver was first de vel oped by Far hat, Ma man, and Brown
(1995) and Far hat, Man del, and Roux (1994). This was
backed up by Van der strae ten, Ke un ings, and Far hat
(1995) and Van der strae ten et al. (1996), who showed that
par ti tion ing for cut- edge weight was not nec es sar ily the
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most ap pro pri ate op ti mi za tion for every solver. How ever,
the field of mesh par ti tion ing has changed some what
since this work was car ried out, and al though other more
re cent work ex ists that takes AR into ac count (e.g., Diek -
mann, Meyer, and Mo nien, 1998; Diek mann, Schlim -
bach, and Wal shaw, 1998; Schlim bach, 1998), our aim in
this pa per is to ex tend the ideas in light of re cent de vel op -
ments in mul ti level mesh- partitioning tech nol ogy.

1.3 OVERVIEW

Be low, in Sec tion 2, we in tro duce the mesh par ti tion ing
prob lem and es tab lish some ter mi nol ogy. We then dis cuss 
the mesh- partitioning prob lem as ap plied to AR op ti mi za -
tion and de scribe how the graph needs to be modi fied to
carry this out. Next, in Sec tion 3, we de scribe the mul ti -
level para digm and pres ent and com pare three pos si ble
match ing al go rithms that take ac count of AR. In Sec tion 4,
we then de scribe a Kernighan- Lin (KL) (Ker nighan and
Lin, 1970) type it era tive lo cal op ti mi za tion al go rithm and
de scribe four pos si ble modi fi ca tions that aim to op ti mize
AR. Fi nally, in Sec tion 5, we com pare the re sults with a
cut- edge par ti tioner, sug gest how the mul ti level strat egy
can be modi fied into a ge neric tech nique, and pres ent
some ideas for fur ther in ves ti ga tion.

The prin ci pal in no va tions de scribed in this pa per are
the fol low ing:

• in Sec tion 2.3, where we de scribe how the graph can be 
modi fied to take AR into ac count;

• in Sec tion 3.2, where we de scribe three match ing al go -
rithms based on AR;

• in Sec tion 4.3, where we de scribe four ways of us ing
the cost func tion to op ti mize for AR;

• in Sec tion 4.5, where we de scribe how the bucket sort
can be modi fied to take into ac count non- in te ger gains.

2 Mesh Partitioning

2.1 THE MESH-PARTITIONING PROBLEM

To de fine the mesh- partitioning prob lem, let G = G(V, E)
be an un di rected graph of ver ti ces V, with edges E that rep -
re sent the data de pend en cies in the mesh. For the pur poses 
of this pa per, we as sume that each graph ver tex rep re sents
a mesh ele ment and that graph edges arise from ele ments
that are ad ja cent in the sense of shar ing an ele ment face.
We as sume that both ver ti ces and edges can be weighted
(with posi tive in te ger val ues) and that |v| de notes the

weight of a ver tex v and simi larly for edges and sets of
ver ti ces and edges. Given that the mesh needs to be dis -
trib uted to P proc es sors, de fine a par ti tion π to be a map -
ping of V into P dis joint sub do mains Sp such that ∪P Sp = V.
To evenly bal ance the load, the op ti mal sub do main
weight is given by S: = |V|/P (where the ceil ing func -
tion x re turns the small est in te ger ≥ x), and the im bal -
ance is then de fined as the maxi mum sub do main weight
di vided by the op ti mal (since the com pu ta tional speed of
the un der ly ing ap pli ca tion is de ter mined by the most
heav ily weighted proc es sor).

Note that in the con text of this pa per, we use the term
load bal anc ing or bal anc ing to mean that each sub do -
main is as signed an equal share of the to tal graph ver tex
weight. In deed, in all the test meshes, every ver tex has a
weight of 1, and so we can sim plify this fur ther to say that
per fect bal ance is at tained if each sub do main is as signed
an equal number of ver ti ces. How ever, this should only be 
con sid ered as bal anc ing the un der ly ing ap pli ca tion if it is
known that each graph ver tex rep re sents an equal amount
of work in the ap pli ca tion in de pend ent of the mesh par ti -
tion. In fact, for the do main de com po si tion meth ods with
which we con cern our selves here, this is usu ally not true,
and the com pu ta tional work is domi nated by the cost of
the lo cal sub do main so lu tions. These are not nor mally in -
de pend ent of the mesh par ti tion and in deed may be im -
pos si ble to de ter mine a pri ori, al though for cer tain so lu -
tion meth ods, it may be pos si ble to op ti mize a re lated cost
func tion (Van der strae ten et al., 1996). How ever, it goes
be yond the scope of this pa per to ad dress such is sues, and
we as sume that a par ti tion is bal anced solely by shar ing
the ver ti ces equally among the proc es sors in the hope that
this will ap proxi mately bal ance the un der ly ing ap pli ca -
tion.

The defi ni tion of the mesh- partitioning prob lem, then,
is to find a par ti tion that evenly bal ances the load or ver tex 
weight in each sub do main while mini miz ing some cost
func tion Γ. Typi cally, this cost func tion is sim ply the to tal
weight of cut edges, but in this pa per we de scribe a cost
func tion based on AR. A more pre cise defi ni tion of the
mesh- partitioning prob lem is there fore to find π such that
Sp ≤ S and such that Γ is mini mized.

2.2 THE ASPECT RATIO 
AND COST FUNCTION

We seek to mod ify the meth ods by op ti miz ing the par ti -
tion on the ba sis of AR rather than cut- edge weight. To do
this, it is nec es sary to de fine a cost func tion that we seek
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to mini mize, and a logi cal choice would be maxp AR(Sp),
where AR(Sp) is the AR of the sub do main Sp. How ever,
maxi mum func tions are no to ri ously dif fi cult to op ti mize
(in deed, it is for this rea son that most mesh- partitioning
al go rithms at tempt to mini mize the to tal cut- edge weight
rather than the maxi mum be tween any two sub do mains),
and so in stead we choose to mini mize the av er age AR:

ΓAR

AR
=∑

p

pS

P

( )
.

(1)

There are sev eral defi ni tions of AR, how ever. For ex am -
ple, for a given poly gon S, a typi cal defi ni tion (Mitchell
and Vasavis, 1992) is the ra tio of the larg est cir cle that can
be con tained en tirely within S (in scribed cir cle) to the
small est cir cle that en tirely con tains S (cir cum cir cle).
How ever, these cir cles are not easy to cal cu late for ar bi -
trary poly gons, and in an op ti mi za tion code in which ARs
may need to be cal cu lated very fre quently, we do not be -
lieve this to be a prac ti cal met ric. It may also fail to ex -
press cer tain ir regu lari ties of shape. A care ful dis cus sion
of the rela tive mer its of dif fer ent ways of meas ur ing AR
may be found in Schlim bach (1998), and for the pur poses
of this pa per, we fol low the ideas therein and de fine the
AR of a given shape by meas ur ing the ra tio of its pe rime -
ter length (sur face area in 3-D) over that of some ideal
shape with iden ti cal area (vol ume in 3-D).

Sup pose then that in 2-D, the ideal shape is cho sen to
be a square. Given a poly gon S with area ΩS and pe rime -
ter length ∂S, the ideal pe rime ter length (the pe rime ter
length of a square with area ΩS) is 4 ΩS , and so the AR
is de fined as ∂S/4 ΩS . Al ter na tively, if the ideal shape is
cho sen to be a cir cle, then the same ar gu ment gives the
AR of ∂S/2 πΩS . In fact, given the defi ni tion of the cost
func tion (1), it can be seen that these two defi ni tions will
pro duce the same op ti mi za tion prob lem (and hence the
same re sults) with the cost just modi fied by a con stant C
(where C = 1/4 for the square and 1/2 π  for the cir cle).
These defi ni tions of AR are eas ily ex tendi ble to 3-D, and
given a poly he dron S with vol ume ΩS and sur face area ∂S, 
the AR can be cal cu lated as C∂S/(ΩS)2/3, where C = 1/4 if
the cube is cho sen as the op ti mal shape and C = 1/π1/362/3

for the sphere. Note that hence forth, in or der to talk in
gen eral terms for both 2-D and 3-D, given an ob ject S, we
shall use the terms ∂S or sur face for the sur face area (3-D)
or pe rime ter length (2-D) of the ob ject and ΩS or vol ume
for the vol ume (3-D) or area (2-D).

Of the above defi ni tions of AR, we choose to use the
cir cle/sphere- based for mu las since they guar an tee that
the as pect ra tios of any shape are ≥ 1.
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This gives a con ven ient for mula for the cost func tion of

Γ
Ω

template =
∂

∑ −

1
1C

S

Sp

p

p

d

d( )

,
(2)

where C d Pd

d

d=
−

π
1 1

2( ) , and d (= 2 or 3) is the di men sion 

of the mesh. We re fer to this cost func tion as Γ template or Γ t

be cause of the way it tries to match shapes to cho sen
 templates.

In fact, it will turn out (see, e.g., Sec tion 3.2) that even
this func tion may be too com plex for cer tain op ti mi za tion
needs, and we can de fine a sim pler one by as sum ing that
all sub do mains have ap proxi mately the same vol ume, 
Ω ΩΜS p ≈ / P, where ΩM is the to tal vol ume of the
mesh. This as sump tion may not nec es sar ily be true, but it
is likely to be true lo cally (see Sec tion 4.4). We can then
ap proxi mate (2) by

Γtemplate ≈
′

∂∑1

C
S

p

p, (3)

where C P d Md

d

d′=
−

( ) ( )π
1 1

2 Ω . This can be sim pli fied

still fur ther by not ing that the sur face of each sub do main
Sp con sists of two com po nents, the ex te rior sur face, ∂ e

pS ,
where the sur face of the sub do main co in cides with the
sur face of the mesh ∂M, and the in te rior sur face, ∂ i

pS ,
where Sp is ad ja cent to other sub do mains and the sur face
cuts through the mesh. Thus, we can break the ∂∑

p pS

term in (3) into two parts, ∂∑ i

p pS  and ∂∑ e

p pS , and sim -

plify (3) fur ther by not ing that ∂∑ e

p pS  is just ∂M, the ex -

te rior sur face of the mesh M. This then gives us a sec ond
cost func tion to op ti mize:

Γsurface = ∂ +∑1

1
2K

S K
p

i
p , (4)

where K P d Md

d

d
1

1 1

2=
−

( ) ( )π Ω  and K M K2 1=∂ / . We

re fer to this cost func tion as Γ surface  or Γ s  be cause it is just
con cerned with op ti miz ing sur faces.

2.3 MODIFYING THE GRAPH

To use these cost func tions in a graph- partitioning con -
text, we must add some ad di tional quali ties to the graph.
Fig ure 1 shows a very sim ple mesh (1a) and its dual graph
(1b). Each ele ment of the mesh cor re sponds to a ver tex in
the graph. The ver ti ces of the graph can be weighted as is

usual (see Sec tion 2.1), but in ad di tion, ver ti ces store the
vol ume and to tal sur face of their cor re spond ing ele ment
(e.g., Ω Ωv e1 1=  and ∂ =∂v e1 1 ). We also weight the edges 
of the graph with the size of the sur face they cor re spond
to. Thus, in Fig ure 1, if D(b, c) re fers to the dis tance be -
tween points b and c, then the weight of edge (v1, v2) is
set to D(b, c). In this way, for ver ti ces vi cor re spond ing
to  elements that have no ex te rior sur face, the sum
of their edge weights is equiva lent to their sur face
(∂ =∑v v vi E i j|( , )|). Thus, for ver tex v2, ∂v2 =∂e2 = D(b,c) + 

D c e D e b v v v v v v( , ) ( , ) | ( , )| |( , )| |( , )|+ = + +2 1 2 5 2 3 .
When it comes to com bin ing ele ments to gether, ei ther

into sub do mains or for the mul ti level match ing (Sec tion
3) these prop er ties, vol ume and sur face can be eas ily
com bined. Thus, in Fig ure 1c, where E e e1 1 4= + , E2 = 
e e3 5+ ,  and E e3 3= ,  we see that  vol  umes can be
di rectly summed—for ex am ple, ΩV1 = ΩE1 = Ωe1 +
Ωe4 = Ω Ωv v1 4+ , as can edge weights, for ex am ple, 
| ( , )| ( , ) ( , ) | ( , )| | ( , )|V V D b c D c d v v v v1 2 1 2 4 5= + = + . The
sur face of a com bined ob ject S is the sum of the sur faces
of its con stitu ent parts less twice the in te rior sur face—for
ex am ple, ∂V1 = ∂E1 = ∂e1 + ∂e4 – 2 × D(a,c) = 
∂ +∂ −v v v v1 4 1 42|( , )|. These prop er ties are very simi lar
to prop er ties in con ven tional graph al go rithms, where the
vol ume com bines in the same way as weight and sur faces
com bine as the sum of edge weights (al though in clud ing
an ad di tional term that ex presses the ex te rior sur face ∂ e ).
The edge weights func tion iden ti cally.

Note that with these modi fi ca tions to the graph, it can
be seen that if we op ti mize us ing the Γ s  cost func tion (4),
the AR mesh- partitioning prob lem is iden ti cal to the cut-
 edge weight mesh- partitioning prob lem with a spe cial
edge weight ing. How ever, the in clu sion of non- in te ger
edge weights does have an ef fect on the some of the tech -
niques that can be used (e.g., see Sec tion 4.5).

2.4 TESTING THE ALGORITHMS

Through out this pa per, we com pare the ef fec tive ness of
dif fer ent ap proaches us ing a set of test meshes. The al go -
rithms have been im ple mented within the frame work of
JOS TLE, a mesh- partitioning soft ware tool de vel oped at
the Uni ver sity of Green wich and freely avail able for aca -
demic and re search pur poses un der a li cens ing agree ment 
(avail able from http://www.gre.ac.uk/~c.wal shaw/jos tle).
The ex peri ments were car ried out on a DEC Al pha with a
466 MHz CPU and 1 Gbyte of mem ory. Due to space con -
sid era tions, we only in clude eight test meshes, but they
have been cho sen to be a rep re sen ta tive sam ple of me -
dium- to large- scale real- life prob lems and in clude both
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2-D and 3-D ex am ples. Ta ble 1 gives a list of the meshes
and their sizes in terms of the number of ver ti ces and
edges. The ta ble also shows the as pect ra tio of each en tire
mesh and the mesh grad ing, which here we de fine as the
maxi mum sur face of any ele ment over the mini mum sur -
face, and these two fig ures give a guide as to how dif fi cult
the op ti mi za tion may be. For ex am ple, “uk” is sim ply a
tri an gu la tion of the Brit ish main land and hence has a very
in tri cate bound ary and there fore a high as pect ra tio. The
“wing” mesh, on the other hand, is a cube con tain ing a
hollowed- out sec tion in the shape of an air plane wing; the
AR is there fore rea sona bly close to 1, but the grad ing is
very high as the mesh goes from very small ele ments
close to the wing to very large ones in the far field.

Ta ble 2 shows the re sults of the most suc cess ful com -
bi na tion of al go rithms—sur face match ing (SM) (see Sec -
tion 3.2) and lo cal tem plate gain/tem plate cost op ti mi za -
tion (LTGTC) (see Sec tion 4.3)—which were cho sen as a
bench mark for the other com bi na tions. For the four dif -
fer ent val ues of P (the number of sub do mains), the ta ble
shows the av er age as pect ra tio as given by Γ t , the edge cut 
| |Ec  (i.e., the number of cut edges, not the weight of cut
edges weighted by sur face size), and the time in sec onds, 
t s , to par ti tion the mesh. No tice that with the ex cep tion of
the “uk” mesh and P = 16, all par ti tions have av er age as -
pect ra tios ≤ 1.53, which is within the tar get range of [1.0,
1.57] sug gested in Diek mann, Meyer, and Mo nien (1998)
and Diek mann, Schlim bach, and Wal shaw (1998).1 In -
deed, for the “uk” mesh, it is no sur prise that the re sults for 
P = 16 are not op ti mal be cause the sub do mains in herit
some of the poor AR from the origi nal mesh (which has an 
AR of 3.82), and it is only when the mesh is split into
small enough pieces—P = 32, 64, or 128—that the op ti -
mi za tion suc ceeds in ame lio rat ing this ef fect. In tui tively,
this also gives a hint as to why DD meth ods are a very suc -
cess ful tech nique as a solver.
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Fig. 1 A sim ple mesh (a), its dual (b), the same mesh with
com bined ele ments (c), and its dual (d)

Ta ble 1
Test Meshes

Mesh Num ber of Ver ti ces Num ber of Edges Type As pect Ra tio Mesh Grad ing

uk 4824 6837 2-D tri an gles 3.82                  7.98e+02
4elt- dual 30,269 44,929 2-D tri an gles 1.08                  2.13e+04
t60k 60,005 89,440 2-D tri an gles 1.80                  2.00e+00
di me20 224,843 336,024 2-D tri an gles 2.11                  3.70e+03
cs4 22,499 43,858 3-D tet ra he dra 1.32                  9.64e+01
wing 62,032 121,544 3-D tet ra he dra 1.27                  1.08e+06
mesh100 103,081 200,976 3-D tet ra he dra 2.02                  2.45e+02
cyl3 232,362 457,853 3-D tet ra he dra 1.59                  8.42e+00



The par ti tion ing times ranged from un der 1 sec ond to a 
maxi mum of 16 sec onds (for the larg est 3-D mesh). Ex pe -
ri ence sug gests that this is not an un rea son able over head
for a do main decomposition- based method.

3 The Multilevel Paradigm

In re cent years, it has been rec og nized that an ef fec tive
way of both speed ing up par ti tion re fine ment and, per -
haps more im por tant, giv ing it a global per spec tive is to
use mul ti level tech niques. The idea is to match pairs of
ver ti ces to form clus ters, use the clus ters to de fine a new
graph, and re cur sively it er ate this pro ce dure un til the
graph size falls be low some thresh old. The coars est graph
is then par ti tioned, and the par ti tion is suc ces sively op ti -
mized on all the graphs start ing with the coars est and end -
ing with the origi nal. This se quence of con trac tion fol -
lowed by re peated ex pan sion/op ti mi za tion loops is
known as the mul ti level para digm and has been suc cess -
fully de vel oped as a strat egy for en hanc ing many par ti -
tion ing ap proaches. The mul ti level idea was first pro -
posed by Bar nard and Si mon (1994) as a method of
speed ing up spec tral bi sec tion. It was sub se quently gen -
er al ized by Hen drick son and Le land (1993), who em -
ployed it to give global par ti tion qual ity to lo cal re fine -
ment al go rithms such as that of Ker nighan and Lin (1970) 
and by Van der strae ten et al. (1996), who used it to speed
up sto chas tic op ti mi za tion tech niques such as simu lated
an neal ing (Kirk patrick, Ge latt, and Vec chi, 1983). Sev -
eral al go rithms for car ry ing out the match ing have been
de vised by Karypis and Ku mar (1995a), while Wal shaw
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Ta ble 2
Fi nal Re sults Us ing Sur face Match ing and Lo cal Tem plate Gain/Tem plate Cost Op ti mi za tion

P = 16 P = 32 P = 64 P = 128

Mesh Γt | |Ec ts Γt | |Ec ts Γt | |Ec ts Γt | |Ec ts

uk 1.62 197 0.27 1.46 332 0.40 1.40 559 0.48 1.40 937 1.08
4elt- dual 1.24 898 0.88 1.28 1358 1.18 1.27 1985 1.40 1.29 2737 1.82
t60k 1.34 1031 1.37 1.28 1607 1.62 1.30 2524 2.03 1.31 3806 2.80
di me20 1.43 1889 4.92 1.34 2886 5.32 1.30 4651 6.15 1.26 6732 7.17
cs4 1.47 2625 2.00 1.47 3660 2.52 1.47 5000 3.23 1.48 6629 3.57
wing 1.37 9346 4.67 1.40 13,640 6.48 1.41 15,706 7.57 1.43 17,027 10.27
mesh100 1.53 6020 4.23 1.49 8413 7.23 1.49 11,577 6.38 1.50 15,995 8.00
cyl3 1.47 10,929 8.68 1.52 16,382 10.05 1.52 22,355 12.03 1.51 29,926 15.97



and Cross (1998) de scribe a method for us ing im bal ance
in the coars est graphs to en hance the fi nal par ti tion qual ity.

3.1 IMPLEMENTATION

Graph Con trac tion. To cre ate a coarser graph 
G V El l l+ + +1 1 1( , ) from G V El l l( , ), we use a vari ant of the 
edge con trac tion al go rithm pro posed by Hen drick son and 
Le land (1993). The idea is to find a maxi mal in de pend ent
sub set of graph edges, or a match ing of ver ti ces, and then
col lapse them. The set is in de pend ent be cause no two
edges in the set are in ci dent on the same ver tex (so no two
edges in the set are ad ja cent) and maxi mal be cause no
more edges can be added to the set with out break ing the
in de pend ence cri te rion. Hav ing found such a set, each se -
lected edge is col lapsed and the ver ti ces, u1, u2 ∈ Vl, say, at 
ei ther end of it are merged to form a new ver tex, v ∈ Vl + 1

with weight | | | | | |v u u= +1 2 .
The Ini tial Par ti tion. Hav ing con structed the se ries of 

graphs un til the number of ver ti ces in the coars est graph is 
smaller than some thresh old, the nor mal prac tice of the
mul ti level strat egy is to carry out an ini tial par ti tion. Here, 
fol low ing the idea of Gupta (1996), we con tract un til the
number of ver ti ces in the coars est graph is the same as the
number of sub do mains, P, and then sim ply as sign ver tex i
to sub do main Si. Un like Gupta, how ever, we do not carry
out re peated ex pan sion/con trac tion cy cles of the coars est
graphs to find a well- balanced ini tial par ti tion but in stead, 
since our op ti mi za tion al go rithm in cor po rates bal anc ing
(of the ver tex weights) (see Sec tion 2.1), we com mence
on the ex pan sion/op ti mi za tion se quence im me di ately.

Par ti tion Ex pan sion. Hav ing op ti mized the par ti tion
on a graph Gl, the par ti tion must be in ter po lated onto its
par ent G l −1 . The in ter po la tion it self is a triv ial mat ter; if a
ver tex v ∈ Vl is in sub do main Sp, then the matched pair of
ver ti ces that it rep re sents, v1, v2 ∈ Vl – 1, will be in Sp.

3.2 INCORPORATING THE ASPECT RATIO

The match ing part of the mul ti level strat egy can be eas ily
modi fied in sev eral ways to take AR into ac count, and in
each case the ver ti ces are vis ited (at most once) us ing a
ran domly or dered linked list. Each ver tex is then matched
with an un matched neigh bor us ing the cho sen match ing
al go rithm, and it and its match are re moved from the list.
Ver ti ces with no un matched neigh bors re main un matched 
and are also re moved. In ad di tion to ran dom match ing
(RM) (Hen drick son and Le land, 1995), where ver ti ces
are matched with ran dom neigh bors, we pro pose and have 
tested three match ing al go rithms.
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“The match ing part of the mul ti level
strat egy can be eas ily modi fied in sev eral
ways to take AR into ac count, and in each
case the ver ti ces are vis ited (at most once)
us ing a ran domly or dered linked list.” 



Sur face Match ing (SM). As we have seen in Sec tion
2.3, the AR par ti tion ing prob lem can be ap proxi mated by
the cut- edge weight prob lem us ing (4), the Γ s  cost func -
tion, and so the sim plest match ing is to use the heavy edge 
ap proach of Karypis and Ku mar (1995a), where the ver -
tex matches across the heavi est edge to any of its un -
matched neigh bors. This is the same as match ing across
the larg est sur face (since here edge weights rep re sent sur -
faces), and we re fer to this as sur face match ing.

Tem plate Cost Match ing (TCM). A sec ond ap -
proach fol lows the ideas of Bouh mala (1998) and
matches ver ti ces with the neigh bor that mini mizes the
given cost func tion. In this case, the cho sen ver tex
matches with the un matched neigh bor which gives the re -
sult ing clus ter the best as pect ra tio. Us ing the Γ t  cost
func tion, we re fer to this as tem plate cost match ing.

Sur face Cost Match ing (SCM). This is the same idea
as TCM only us ing the Γ s  cost func tion, (4), which is
faster to cal cu late and matches a ver tex with the neigh bor
that mini mizes the sur face of the re sult ing clus ter.

Fig ure 2 mo ti vates the dif fer ence be tween sur face
match ing (SM) and cost match ing (SCM and TCM). For
sur face match ing, the graph ver tex cor re spond ing to e1

matches across the larg est sur face area, in this case with
e2. For cost match ing, the graph ver tex cor re spond ing to
e1 matches to mini mize the as pect ra tio (TCM) or sur face
area (SCM) of the re sult ing clus ter, in this case with e3.

3.3 RESULTS FOR DIFFERENT 
MATCHING FUNCTIONS

In Ta bles 3, 4, and 5, we com pare the re sults in Ta ble 2,
where SM was used, with RM, SCM, and TCM, re spec -
tively. In all cases, the LTGTC op ti mi za tion al go rithm
(see Sec tion 4.3) was used. For each value of P, the first
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Fig. 2 Sur face (a) and cost (b) match ing

Ta ble 3
Ran dom Match ing Re sults Com pared with Sur face Match ing

P = 16 P = 32 P = 64 P = 128

Mesh Γt

Γ
Γ

( )

( )

RM

SM

−

−

1

1
Γt

Γ
Γ

( )

( )

RM

SM

−

−

1

1
Γt

Γ
Γ

( )

( )

RM

SM

−

−

1

1
Γt

Γ
Γ

( )

( )

RM

SM

−

−

1

1

uk 1.65 1.05 1.49 1.06 1.40 1.01               1.39           0.98
4elt- dual 1.29 1.20 1.30 1.09 1.29 1.05               1.29           1.02
t60k 1.36 1.08 1.36 1.26 1.36 1.19               1.37           1.20
di me20 1.45 1.05 1.39 1.16 1.39 1.29               1.35           1.33
cs4 1.58 1.24 1.52 1.12 1.55 1.17               1.53           1.10
wing 1.44 1.17 1.44 1.12 1.44 1.08               1.46           1.07
mesh100 1.59 1.10 1.52 1.05 1.53 1.08               1.57           1.13
cyl3 1.53 1.11 1.52 1.00 1.59 1.14               1.56           1.10
Av er age 1.12 1.11 1.13                                 1.12



col umn shows the av er age AR, Γ t , of the par ti tion ing.
The sec ond col umn for each value of P then com pares re -

sults with those in Ta ble 2 us ing the met ric 
Γ
Γ

( )

( )

RM

SM

−

−

1

1
 for

RM and so forth. Thus, a fig ure > 1 means that RM has
pro duced worse re sults than SM. These com pari sons are
then av er aged and so it can be seen, for ex am ple, for P =
16 that RM pro duces re sults 12% (1.12) worse on av er age
than SM. In deed, RM is bet ter than SM in only one case
(“uk,” P = 128) and up to 33% worse (“di me20,” P = 128),
with the over all av er age qual ity 12% worse than SM. This
is not al to gether sur pris ing since the AR of ele ments in the 
coars est graph can be very poor if the match ing takes no
ac count of it, and hence the op ti mi za tion has to work with
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Ta ble 4
Sur face Cost Match ing Re sults Com pared with Sur face Match ing

P = 16 P = 32 P = 64 P = 128

Mesh Γt

Γ
Γ
( )

( )

SCM

SM

−

−

1

1
Γt

Γ
Γ
( )

( )

SCM

SM

−

−

1

1
Γt

Γ
Γ
( )

( )

SCM

SM

−

−

1

1
Γt

Γ
Γ
( )

( )

SCM

SM

−

−

1

1

uk 1.61 0.98 1.48 1.05 1.39 0.97               1.39           0.99
4elt- dual 1.26 1.09 1.25 0.90 1.26 0.97               1.28           0.98
t60k 1.30 0.90 1.25 0.88 1.31 1.03               1.31           1.01
di me20 1.38 0.88 1.34 0.99 1.30 1.01               1.28           1.07
cs4 1.50 1.06 1.52 1.12 1.51 1.07               1.51           1.07
wing 1.41 1.10 1.42 1.07 1.42 1.02               1.42           0.99
mesh100 1.55 1.02 1.55 1.11 1.52 1.06               1.52           1.04
cyl3 1.51 1.08 1.50 0.95 1.54 1.03               1.55           1.08
Av er age 1.01 1.01 1.02                                 1.03

Ta ble 5
Tem plate Cost Match ing Re sults Com pared with Sur face Match ing

P = 16 P = 32 P = 64 P = 128

Mesh Γt

Γ
Γ
( )

( )

TCM

SM

−

−

1

1
Γt

Γ
Γ
( )

( )

TCM

SM

−

−

1

1
Γt

Γ
Γ
( )

( )

TCM

SM

−

−

1

1
Γt

Γ
Γ
( )

( )

TCM

SM

−

−

1

1

uk 1.65 1.04 1.48 1.05 1.41 1.03               1.39           0.99
4elt- dual 1.26 1.08 1.28 0.99 1.28 1.03               1.27           0.94
t60k 1.29 0.87 1.31 1.09 1.29 0.96               1.31           1.02
di me20 1.39 0.90 1.34 1.00 1.28 0.92               1.28           1.07
cs4 1.49 1.04 1.47 1.01 1.50 1.05               1.50           1.04
wing 1.41 1.09 1.41 1.04 1.41 1.00               1.42           0.98
mesh100 1.48 0.89 1.47 0.96 1.51 1.03               1.51           1.03
cyl3 1.49 1.04 1.50 0.95 1.53 1.03               1.52           1.03
Av er age 0.99 1.01 1.01                                 1.01



badly shaped ele ments. This limi ta tion is graphi cally
dem on strated in Fig ure 3, which shows an ex am ple of the
shapes of the fi nal 16 clus ters in the coars est graph of an
ex am ple 2-D mesh. While the shapes for SM (3b) are very 
good (al though the bor ders are some what ir regu lar), the
shapes for RM (3a) are ex tremely poor, and as a re sult, the
par ti tion op ti mi za tion on the coarser graphs is lim ited in
the im prove ments that can be made.

When it comes to com par ing SM with SCM and TCM
(Ta bles 4 and 5), there is ac tu ally very lit tle dif fer ence;
SCM is about 1.9% worse on av er age and TCM only
about 0.6% worse. This sug gests that the mul ti level strat -
egy is rela tively ro bust to the match ing al go rithm, pro -
vided the AR is taken into ac count in some way.

With re gard to par ti tion ing time, RM was on av er age
about 32.9% slower than SM; as ex plained above, this is
be cause the op ti mi za tion is in hib ited by the poor qual ity
of the coarser graph and thus took con sid era bly longer.
SCM and TCM were about 14.3% and 8.5% slower than
SM, re spec tively; this is due to the slightly slower match -
ing pro cess. How ever, the mul ti level par ti tion ing is gen -
er ally very fast, and any of the in tel li gent match ing al go -
rithms (as op posed to ran dom match ing) do not add
sig nifi cantly to the op ti mi za tion time.

Over all, this sug gests that SM is the al go rithm of
choice, al though there is lit tle bene fit over TCM.

4 The Kernighan-Lin 
Optimization Algorithm

In this sec tion, we dis cuss the key fea tures of an op ti mi za -
tion al go rithm, fully de scribed in Wal shaw and Cross
(1998) and then in Sec tion 4.3 de scribe how it can be
modi fied to op ti mize for AR. It is a Kernighan- Lin (KL)
type al go rithm in cor po rat ing a hill- climbing mecha nism
to en able it to es cape from lo cal min ima. The al go rithm
uses bucket sort ing (Sec tion 4.5), the lin ear time com -
plex ity im prove ment of Fi duc cia and Mat they ses (1982),
and is a par ti tion op ti mi za tion for mu la tion. In other
words, it op ti mizes a par ti tion of P sub do mains rather
than a bi sec tion.

4.1 THE GAIN FUNCTION

A key con cept in the method is the idea of gain. The gain
g(v, q) of a ver tex v in sub do main Sp can be cal cu lated for
every other sub do main, Sq, q ≠ p, and ex presses how much 
the cost of a given par ti tion would be im proved were v to
mi grate to Sq. Thus, if π de notes the cur rent par ti tion and 
π′ the par ti tion if v mi grates to Sq, then for a cost func tion
Γ, the gain g v q( , ) ( ) ( )= − ′Γ Γπ π . As sum ing the mi gra -
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Fig. 3 Fi nal “ele ment” shapes for ran dom (a) and sur face
(b) match ing



tion of v only af fects the cost of Sp and Sq (as is true for Γ t

and Γ s ), then we get

g v q S S v S

S v
q q p

p

( , ) ( ) ( ) ( )

( )

= − + +

− −

AR AR AR

AR
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For Γ t , this gives an ex pres sion
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which can not be fur ther sim pli fied. How ever, for Γ s ,
since
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where |( , )|S vq  de notes the sum of edge weights be tween
Sq and v, we get

{ }g v q
K

S v S vq psurface( , ) |( , )| |( , )|= −
2

1

. (7)

No tice in par ticu lar that g surface is the same as the cut- edge
weight gain func tion and that it is en tirely lo cal ized (i.e.,
the gain of a ver tex only de pends on the length of its
bounda ries with a sub do main and not on any in trin sic
quali ties of the sub do main that could be changed by non -
lo cal mi gra tion).

4.2 THE ITERATIVE 
OPTIMIZATION ALGORITHM

The it era tive op ti mi za tion al go rithm has been spe cifi cally 
con structed to ex ploit the flexi bil ity in her ent in the mul ti -
level para digm and uses im bal ance in the coarser graphs
to en hance the fi nal par ti tion qual ity. More spe cifi cally,
by al low ing a large im bal ance in the coars est graphs, a
bet ter par ti tion may be found than if bal ance is rig idly
 enforced, and by re mov ing this im bal ance gradu ally
through out the mul ti level pro ce dure, this qual ity is not
de graded. To this end, the op ti mi za tion de fines a bal anc -
ing sched ule—that is, an in creas ing se ries of tar get sub do -
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main weights, Tl, one for each graph Gl. If every sub do main,
Sp, is not heav ier than this tar get (i.e., max| |S Tp l≤ ), then
we say that the graph is suf fi ciently bal anced, and the op -
ti mi za tion can con cen trate on re fine ment alone (as long as 
the bal ance is not de stroyed). How ever, if max| |S Tp l> ,
then the op ti mi za tion must con cen trate on bal anc ing
(with some re gard to re fine ment), and this is achieved by
de ter min ing a bal anc ing flow—that is, a sched ule of
weight to be trans ferred, Fpq, be tween every pair of ad ja -
cent sub do mains, Sp and Sq, which will bal ance the sub do -
main weights. Vari ous bal anc ing sched ules, to gether with 
an al go rithm due to Hu, Blake, and Em er son (1998) for
de ter min ing a bal anc ing flow, are fully de scribed in Wal -
shaw and Cross (1998). Here we use the most suc cess ful
bal anc ing sched ule from that pa per and set T Sl l=θ ,
where S = |V|/P is just the op ti mal sub do main weight
(see Sec tion 2.1), and

θl
l

P

N
= +







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
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2

 ,

where N l −1  is the number of ver ti ces in G l −1 , the par ent
graph of Gl. In other words, a graph Gl is con sid ered bal -

anced if the im bal ance is less than θ l
l

P

N
= +


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
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−

1 2
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2

 for

l > 0.
The it era tive op ti mi za tion al go rithm, as is typi cal for

KL- type al go rithms, has in ner and outer it era tive loops,
with the outer loop ter mi nat ing when no mi gra tion takes
place dur ing an in ner loop. The op ti mi za tion uses two
bucket- sorting struc tures or bucket trees (see Sec tion 4.5)
and is ini tial ized by cal cu lat ing the gain for all bor der ver -
ti ces and in sert ing them into one of the bucket trees. These 
ver ti ces will sub se quently be re ferred to as can di date ver -
ti ces and the tree con tain ing them as the can di date tree.

The in ner loop pro ceeds by ex am in ing can di date ver ti -
ces, high est gain first (by al ways pick ing ver ti ces from the 
high est ranked bucket), test ing whether the ver tex is ac -
cept able for mi gra tion (see be low), and then trans fer ring
it to the other bucket tree (the tree of ex am ined ver ti ces).
This in ner loop ter mi nates when the can di date tree is
empty, al though it may ter mi nate early if the par ti tion cost 
(i.e., the av er age as pect ratio) rises too far above the cost
of the best par ti tion found so far. Once the in ner loop has
ter mi nated, any ver ti ces re main ing in the can di date tree
are trans ferred to the ex am ined tree, and fi nally point ers
to the two trees are swapped ready for the next pass
through the in ner loop.

Mi gra tion Ac cep tance. Let T re fer to the tar get
weight for the graph and W rep re sent the weight of the
larg est sub do main, W SP p=max | |. If the re quired flow
from sub do main Sp to sub do main Sq is Fpq, a can di date
ver tex v with weight |v| (> 0) is ac cept able for mi gra tion
from Sp to Sq (with weights | |S p  and | |S q ) if

(a) W > T and 2Fpq > |v|   

or              

(b) W ≤ T and |Sq| + |v| ≤ T.

(8)

These cri te ria re flect the aim of try ing to bal ance the
graph down to the tar get weight, T, and then keep ing it
there. If the graph is not yet within the im bal ance tol er -
ance (i.e., W > T), then (8a) only al lows mi gra tion, which
re duces the re quired flow. Con di tion (8b) guar an tees that
once bal ance is achieved, the graph can not be come un bal -
anced again.

Mi gra tion Con fir ma tion. The al go rithm also uses a
KL- type hill- climbing strat egy. In other words, ver tex mi -
gra tion from sub do main to sub do main can be ac cepted
even if it de grades the par ti tion qual ity and later, based on
the sub se quent evo lu tion of the par ti tion, ei ther re jected
or con firmed. Dur ing each pass through the in ner loop, a
rec ord of the best par ti tion achieved by mi gra tion within
that loop is main tained to gether with a list of ver ti ces that
have mi grated since that value was at tained. If sub se quent 
mi gra tion finds a “bet ter” par ti tion, then the mi gra tion is
con firmed, and the list is re set. Once the in ner loop is ter -
mi nated, any ver ti ces re main ing in the list (ver ti ces whose 
mi gra tion has not been con firmed) are mi grated back to
the sub do mains they came from when the op ti mal cost
was at tained.

To de fine a “bet ter” par ti tion, let π rep re sent the best
par ti tion reached so far and π i  the sub se quent par ti tion
af ter some mi gra tion (i.e., af ter some it era tions of the in -
ner loop). Each par ti tion has a cost as so ci ated with it, 
C( )π , and an im bal ance that de pends on W ( )π , the weight 
of the larg est sub do main in that par ti tion. Again, let T rep -
re sent the tar get weight for the graph. De not ing C i( )π
and W i( )π  by C i  and W i  (and simi larly for π), then π i  is
con firmed as a new op ti mal par ti tion if

(a) C Ci <      

or           

(b) C Ci =  and W Wi <

or           

(c) T W Wi≤ < .     

(9)

346 COM PUT ING AP PLI CA TIONS



Con di tion (9c) sim ply states that while the graph is un bal -
anced (i.e., W Ti > ), any par ti tion that im proves the bal -
ance is con firmed. Con di tions (9a) and (9b) are more typi -
cal of KL- type al go rithms and con firm any par ti tion that
ei ther im proves on the op ti mal cost (9a) or im proves on
the op ti mal bal ance with out rais ing the cost (9b).

4.3 INCORPORATING THE 
ASPECT RATIO: LOCALIZATION

One of the ad van tages of us ing cut- edge weight as a cost
func tion is its lo cal ized na ture. When a graph ver tex mi -
grates from one sub do main to an other, only the gains of
ad ja cent ver ti ces are af fected. In con trast, when us ing the
graph to op ti mize AR, if a ver tex v mi grates from Sp to Sq,
the vol ume and sur face of both sub do mains will change.
This, in turn, means that when us ing the tem plate cost
func tion (2), the gain of all bor der ver ti ces both within
and abut ting sub do mains Sp and Sq will change. Strictly
speak ing, all these gains should be ad justed with the huge
dis ad van tage that this may in volve thou sands of floating-
 point op era tions and hence be pro hibi tively ex pen sive.
We have tested (see Ta ble 8) a ver sion that in cludes full
up dat ing but, as al ter na tives, we pro pose three lo cal ized
vari ants.

Sur face Gain/Sur face Cost (SGSC). The sim plest
way to lo cal ize the up dat ing of the gains is to make the as -
sump tion in Sec tion 2.2 that the sub do mains all have ap -
proxi mately equal vol ume and to use the sur face cost
func tion Γ s  from (4). As men tioned in Sec tion 2.3, the
prob lem im me di ately re duces to the cut- edge weight
prob lem, al beit with non- in te ger edge weights, and from
(7) only the gains of the ver ti ces ad ja cent to the mi grat ing
ver tex will need up dat ing. How ever, if this as sump tion is
not true, it is not clear how well Γ s  will op ti mize the AR,
and be low we pro vide some ex peri men tal re sults.

Sur face Gain/Tem plate Cost (SGTC). The sec ond
method we pro pose for lo cal iz ing the up dates of gain re -
lies on the ob ser va tion that the gain is sim ply used as a
method of rat ing the ver ti ces so that the al go rithm al ways
vis its those with high est gain first (us ing the bucket sort).
It is not clear how cru cial this rat ing is to the suc cess of the 
al go rithm, and in deed Karypis and Ku mar (1995b) dem -
on strated that (at least when op ti miz ing for cut- edge
weight) al most as good re sults can be achieved by sim ply
vis it ing the ver ti ces in ran dom or der. We there fore pro -
pose ap proxi mat ing the gain with the sur face cost func -
tion Γ s  from (4) to rate the ver ti ces and store them in the
bucket tree struc ture but us ing the tem plate cost func tion 
Γ t  from (2) to as sess the change in cost when ac tu ally mi -
grat ing a ver tex. This lo cal izes the gain func tion.

Lo cal Tem plate Gain/Tem plate Cost (LTGTC). A
third pos si bil ity we pro pose is to ac tu ally use the tem plate
cost func tion, Γ t , for ad just ing the gain but only ad just ing
the gain of those ver ti ces ad ja cent to the mi grat ing ver tex.
The mo ti va tion is that the neigh bors of the mi grat ing ver -
tex are likely to have large changes in gain, whereas the
gains of other ver ti ces are likely to only change mar gin -
ally (since they are only af fected by the change in vol ume
and sur face of sub do mains). The dis ad van tage is that the
gains will be come pro gres sively more and more in ac cu -
rate as the op ti mi za tion pro gresses; how ever, they are still
likely to be as ac cu rate as us ing the sur face cost.

Fi nally note that the im ple men ta tion, which, when a
ver tex mi grates from sub do main Sp to Sq, in volves full up -
dat ing of the gains of all ver ti ces in and ad ja cent to the
bor ders of Sp and Sq, is re ferred to as tem plate gain/tem -
plate cost (TGTC).

4.4 RESULTS FOR DIFFERENT
OPTIMIZATION FUNCTIONS

Ta bles 6 and 7 com pare SGSC and SGTC op ti mi za tion
against the LTGTC re sults from Ta ble 2. Both sets of re -
sults use sur face match ing (SM). The ta bles are in the
same form as those in Sec tion 3.3 and show that on av er -
age the sur face gain func tion pro vides re sults that are
12.2% (SGSC) and 14.1% (SGTC) worse than LTGTC.

Note that in ear lier re sults (Wal shaw et al., 1998), we
con cluded that SGTC was the al go rithm of choice, and
the rea son for this dis crep ancy is ex plained in the test
meshes used. In Wal shaw et al. (1998), we did not use the
“4elt- dual” and “wing” meshes, which con tain the high -
est mesh grad ing (the ra tio of the larg est sur face of an ele -
ment to the small est), re spec tively, 2.13e+4 and 1.08e+6.
Look ing at the re sults in more de tail, then, “4elt- dual”
gives av er age as pect ra tios be tween 31% and 79% worse
than LTGTC, while “wing” ranges be tween 46% and 74% 
worse. These heav ily in flu ence the av er age re sults, and
the rea son we be lieve this to hap pen is that the ap proxi ma -
tion (3) made in Sec tion 2.2, that every sub do main has ap -
proxi mately equal vol ume, com pletely breaks down for
meshes with very high grad ings. For all the other meshes,
the SGSC and SGTC op timi za tions give av er age ARs
from 20% bet ter to 17% worse than LTGTC. In fact, if we
ex clude the “4elt- dual” and “wing” meshes from the re -
sults, on av er age, SGSC is 1.40% bet ter than LTGTC, and
SGTC is 0.36% worse. This leads us to sug gest that as a
very rough “ball park” fig ure, if the mesh grad ing is of the
or der 103 or less, the sur face gain func tion pro vides per -
fectly good re sults, but if greater than this, a more ac cu -
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rate es ti mate of gain is nec es sary and LTGTC is to be pre -
ferred.

Ta ble 8 com pares TGTC op ti mi za tion, the ver sion that 
uses full up dat ing of gains, with LTGTC and shows that
on av er age LTGTC and TGTC give re sults that are al most
equiva lent in qual ity (TGTC is in fact 0.50% worse than
LTGTC) and hence that LTGTC pro vides a very good ap -
proxi ma tion to TGTC.

Again, we are not pri mar ily con cerned with par ti tion -
ing times, but it was in ter est ing to note that SGSC and
SGTC were on av er age 28.41% and 24.38% faster than
LTGTC. This is be cause the sur face cost func tion, Γ s , is
much quicker to cal cu late when as sess ing or up dat ing the

gains (since it does not in volve cal cu lat ing S p

d

d

−1

). TGTC
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Ta ble 6
Sur face Gain/Sur face Cost Op ti mi za tion Com pared with Lo cal Tem plate Gain/Tem plate Cost

P = 16 P = 32 P = 64 P = 128

Mesh Γt

Γ
Γ

( )

( )

SGSC

LTGTC

−

−

1

1
Γt

Γ
Γ

( )

( )
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LTGTC

−

−

1

1
Γt

Γ
Γ

( )

( )

SGSC

LTGTC

−

−

1

1
Γt

Γ
Γ

( )

( )

SGSC

LTGTC

−

−

1

1

uk 1.67 1.07 1.47 1.02 1.38 0.97               1.41           1.03
4elt- dual 1.35 1.47 1.42 1.52 1.36 1.33               1.38           1.32
t60k 1.27 0.79 1.25 0.87 1.30 1.01               1.27           0.88
di me20 1.36 0.84 1.34 1.00 1.28 0.92               1.26           1.01
cs4 1.48 1.03 1.51 1.10 1.50 1.06               1.50           1.04
wing 1.75 2.01 1.63 1.59 1.65 1.59               1.61           1.42
mesh100 1.48 0.90 1.48 0.97 1.51 1.04               1.52           1.04
cyl3 1.49 1.04 1.52 0.99 1.52 1.00               1.53           1.04
Av er age 1.14 1.13 1.12                                 1.10

Ta ble 7
Sur face Gain/Tem plate Cost Op ti mi za tion Com pared with Lo cal Tem plate Gain/Tem plate Cost

P = 16 P = 32 P = 64 P = 128

Mesh Γt

Γ
Γ

( )

( )

SGSC

LTGTC

−

−

1

1
Γt

Γ
Γ

( )

( )

SGSC

LTGTC

−

−

1

1
Γt

Γ
Γ

( )

( )

SGSC

LTGTC

−

−

1

1
Γt

Γ
Γ

( )

( )

SGSC

LTGTC

−

−

1

1

uk 1.62 1.00 1.50 1.08 1.41 1.03               1.40           1.00
4elt- dual 1.43 1.79 1.42 1.50 1.37 1.36               1.38           1.31
t60k 1.30 0.90 1.25 0.90 1.29 0.95               1.27           0.87
di me20 1.35 0.82 1.33 0.98 1.30 0.98               1.30           1.17
cs4 1.53 1.15 1.49 1.05 1.51 1.08               1.50           1.04
wing 1.65 1.74 1.65 1.65 1.66 1.62               1.63           1.46
mesh100 1.48 0.91 1.48 0.97 1.52 1.05               1.50           1.01
cyl3 1.52 1.10 1.52 0.99 1.53 1.03               1.52           1.02
Av er age 1.18 1.14 1.14                                 1.11



was more than 50 times slower on av er age than LTGTC,
and we feel that this jus ti fies the as ser tion that full up dat -
ing of gains is too ex pen sive.

4.5 INCORPORATING THE ASPECT 
RATIO: BUCKET SORTING WITH
NON-INTEGER GAINS

The bucket sort is an es sen tial tool for the ef fi cient and
rapid sort ing and ad just ment of ver ti ces by their gain. The
con cept was first sug gested by Fi duc cia and Mat they ses
(1982), and the idea is that all ver ti ces of a given gain g are 
placed to gether in an un sorted “bucket,” which is ranked
g. Find ing a ver tex with maxi mum gain then sim ply con -
sists of find ing the (nonempty) bucket with the high est
rank and pick ing a ver tex from it. If the ver tex is sub se -
quently mi grated from one sub do main to an other, then the 
gains of any af fected ver ti ces have to be ad justed and the
list of ver ti ces that are can di dates for mi gra tion (re)sorted
by gain. Us ing a bucket sort for this op era tion sim ply re -
quires re cal cu lat ing the gains of af fected ver ti ces and
trans fer ring them to the ap pro pri ate buck ets. If a bucket
sort were not used and the ver ti ces were sim ply stored in a
list in gain or der, then the en tire list would re quire re sort -
ing (or at least merge sort ing with the sorted list of ad -
justed ver ti ces), an es sen tially O(N) op era tion for every
mi gra tion.

The im ple men ta tion of the bucket sort is fully de -
scribed in (Wal shaw and Cross, 1998). It in cludes a rank -
ing for pri ori tiz ing ver ti ces for mi gra tion, which in cor po -
rates their weight as well as their gain. The nonempty
buck ets are stored in a bi nary tree to save ex ces sive mem -
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Ta ble 8
Tem plate Gain/Tem plate Cost Op ti mi za tion Com pared with Lo cal Tem plate Gain/Tem plate Cost

P = 16 P = 32 P = 64 P = 128

Mesh Γt

Γ
Γ

( )
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TGTC

LTGTC
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Γ
Γ
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LTGTC
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Γ
Γ
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TGTC

LTGTC

−

−

1

1
Γt

Γ
Γ

( )

( )

TGTC

LTGTC

−

−

1

1

uk 1.64 1.04 1.49 1.06 1.38 0.95               1.38           0.96
4elt- dual 1.23 0.98 1.27 0.96 1.28 1.01               1.28           0.96
t60k 1.33 1.00 1.28 0.98 1.31 1.03               1.31           1.01
di me20 1.39 0.91 1.34 1.01 1.29 0.95               1.29           1.13
cs4 1.48 1.04 1.49 1.04 1.48 1.01               1.49           1.01
wing 1.38 1.01 1.41 1.04 1.41 1.00               1.44           1.02
mesh100 1.52 0.97 1.50 1.01 1.50 1.01               1.51           1.02
cyl3 1.48 1.02 1.51 0.98 1.52 1.01               1.52           1.02
Av er age 0.99 1.01 1.00                                 1.02



ory use (since we do not know a pri ori how many buck ets
will be needed), and this struc ture is re ferred to above as a
bucket tree.

The only dif fi culty in adapt ing this pro ce dure to AR
op ti mi za tion is that with non- in te ger edge weights, the
gains are also real non- in te ger num bers. This is not a ma -
jor prob lem in it self as we can just give buck ets an in ter val
of gains rather than a sin gle in te ger—that is, the bucket
ranked 1 could con tain any ver tex with gain in the in ter val
[0.5, 1.5). How ever, the is sue of scal ing then arises since,
if us ing the sur face gain func tion Γ s  (SGSC and SGTC),
for a mesh en tirely con tained within the unit square/cube,
all the ver ti ces are likely to end up in one of two buck ets
(de pend ent only on whether they have posi tive or nega tive 
gains). For tu nately, we can eas ily cal cu late the maxi mum
pos si ble gain when us ing Γ s , which would oc cur if the
ver tex with the larg est sur face, v ∈ Sp, for ex am ple, were
en tirely sur rounded by neigh bors in Sq. The maxi mum
pos si ble gain is then 2 max v V v∈ ∂  (strictly speak ing, 
2 max v V

i v∈ ∂ ), and simi larly the mini mum gain is 
− ∂∈2 max v V v. This means we can eas ily choose the
number of buck ets—B, for ex am ple—and scale the gain
ac cord ingly so that for a gain g, we cal cu late the ap pro pri -
ate bucket by find ing the in te ger part of

  
gB

vv V4max ∈ ∂
.

If us ing Γ t  as a gain func tion (LTGTC and TGTC), we can 
ap proxi mate the maxi mum gain (us ing Γ s ) to get the same 
scal ing, al though then the ac tual number of buck ets used
only ap proxi mates B. For ei ther Γ s  or Γ t , a prob lem still
arises for meshes with a high grad ing be cause many of the
ele ments will have an in sig nifi cant sur face area com pared 
to the maxi mum and hence be con tained in a small
number of buck ets cen tered around 0. How ever, the ex -
peri ments car ried out here all used a scal ing that al lowed a 
maxi mum of B = 1000 buck ets, and we have tested the al -
go rithm up to B = 10,000 buck ets with out sig nifi cant pen -
alty in terms ei ther of mem ory or run time. We have also
tested the al go rithm with B = 100, al though with a 4.8%
av er age de te rio ra tion in the re sults.

5 Discussion and Conclusions

5.1 COMPARISON WITH 
CUT-EDGE WEIGHT PARTITIONING

In Ta ble 9, we com pare AR as pro duced by the edge- cut
ver sion of JOS TLE (EC) de scribed in Wal shaw and Cross
(1998) with the re sults from Ta ble 2. The EC par ti tioner

never pro duces av er age as pect ra tios that are ac tu ally bet -
ter than the AR par ti tioner and, on av er age, gives re sults
that are 19.8% worse than those of the AR par ti tioner and
can be up to 61% worse. No tice that there is no real con -
sis tency in the dif fer ences, how ever (as there is in the dif -
fer ences be tween SGSC and SGTC com pared with
LTGTC; see Sec tion 4.4), and we con clude that al though
an EC par ti tioner might be ex pected to pro duce rea sona -
bly good AR re sults (since a par ti tion with a low value of 
| |Ec  is likely to have com pact and there fore well- shaped
sub do mains), tar get ing the cost func tion on AR can pro -
vide con sid era bly bet ter re sults in most cases.

Mean while, in Ta ble 10, we com pare the edge cut pro -
duced by the EC ver sion of JOS TLE with that of the AR
ver sion. As might be ex pected, EC par ti tion ing pro duces
the best re sults (about 14.4% bet ter than AR). No tice, in
par ticu lar, the re sults for the “wing” mesh (the mesh with
the high est grad ing), where the EC par ti tioner pro duces
par ti tions with up to 50% fewer cut edges than the AR
par ti tioner, but the AR par ti tioner pro duces sub do mains
with as pect ra tios 23% to 61% bet ter. This dem on strates
that a good par ti tion for the as pect ra tio is not nec es sar ily
a good par ti tion for edge cut and vice versa.

In terms of time, the EC par ti tioner is about two times
faster than AR on av er age. Again, this is no sur prise since
the AR par ti tion ing in volves floating- point op era tions
(as sess ing cost and com bin ing ele ments), while EC par ti -
tion ing only re quires in te ger op era tions. How ever, both
are ex tremely fast at pro duc ing high- quality par ti tions.

5.2 GENERIC MULTILEVEL 
MESH PARTITIONING

In this pa per, we have adapted a mesh- partitioning tech -
nique origi nally de signed to solve the edge- cut par ti tion -
ing prob lem to a dif fer ent cost func tion. The ques tion then 
arises, Is the mul ti level strat egy an ap pro pri ate tech nique
for solv ing par ti tion ing prob lems (or in deed other op ti mi -
za tion prob lems) with dif fer ent cost func tions? Clearly,
this is an im pos si ble ques tion to an swer in gen eral, but a
few per ti nent re marks can be made:

• For the AR- based cost func tions at least, the method
seems rela tively sen si tive to whether the cost is in -
cluded in the match ing. This sug gests that, if pos si ble,
a ge neric mul ti level par ti tioner should use the cost
func tion to mini mize the cost of the match ings. Note,
how ever, that this may not be pos si ble since a cost
func tion that, say, meas ured the cost of a map ping onto 
a par ticu lar proc es sor to pol ogy would be un able to
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func tion since at the match ing stage no par ti tion, and
hence no map ping, ex ists.

• The op ti mi za tion re lies, for ef fi ciency at least, on hav -
ing a lo cal gain func tion so that the mi gra tion of a ver -
tex does not in volve an O(N/P) or even an O(N) up date. 
Here we were able to lo cal ize the up dat ing of gains ei -
ther by (a) mak ing a sim ple ap proxi ma tion to lo cal ize
the cost func tion or (b) by just ig nor ing the up dat ing of
non ad ja cent ver ti ces. How ever, it is not clear that (a) is
al ways pos si ble or that (b) is al ways valid. On the other 
hand, the un der ly ing ap proach in (a), which es sen tially 
de cou ples the gain from the cost, does look quite
prom is ing for more gen eral cost func tions. In other
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Ta ble 9
AR Re sults for the Edge- Cut Par ti tioner Com pared with the AR Par ti tioner

  P = 16 P = 32 P = 64 P = 128

Mesh Γt

Γ
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Γ
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Γ
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Γ
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uk 1.68 1.10 1.55 1.19 1.46 1.15               1.41           1.04
4elt- dual 1.32 1.33 1.28 1.01 1.29 1.06               1.29           1.01
t60k 1.38 1.13 1.31 1.09 1.33 1.09               1.32           1.02
di me20 1.50 1.17 1.45 1.33 1.40 1.33               1.38           1.45
cs4 1.52 1.12 1.54 1.15 1.53 1.12               1.51           1.05
wing 1.60 1.61 1.61 1.53 1.61 1.50               1.53           1.23
mesh100 1.55 1.03 1.60 1.22 1.61 1.24               1.61           1.21
cyl3 1.59 1.25 1.63 1.21 1.61 1.18               1.59           1.17
Av er age 1.22 1.22 1.21                                 1.15

Ta ble 10
| |Ec  Re sults for the Edge- Cut Par ti tioner Com pared with the AR Par ti tioner

  P = 16 P = 32 P = 64 P = 128

Mesh | |Ec
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uk 182 0.92 305 0.92 512 0.92                809           0.86
4elt- dual 602 0.67 902 0.66 1515 0.76              2364           0.86
t60k 1016 0.99 1552 0.97 2439 0.97              3624           0.95
di me20 1382 0.73 2368 0.82 3717 0.80              5540           0.82
cs4 2496 0.95 3501 0.96 4666 0.93              6077           0.92
wing 5008 0.54 6866 0.50 9401 0.60           11,877           0.70
mesh100 4782 0.79 7851 0.93 11,100 0.96           15,202           0.95
cyl3 11,377 1.04 16,783 1.02 22,369 1.00           29,432           0.98
Av er age 0.83 0.85 0.87                                 0.88



words, we can use a lo cal (and pos si bly crude) ap -
proxi ma tion for the gain func tion and then con trol the
con ver gence/hill climb ing of the KL method (Ker -
nighan and Lin, 1970) with the true cost. In some ways, 
this could be re garded as a hy brid of the KL method
and simu lated an neal ing (SA) (Kirk patrick, Ge latt,
and Vec chi, 1983) be cause in some ways you could re -
gard SA as KL with a ran dom gain func tion. This con -
cept of de cou pling the gain and cost func tions is part of 
our on go ing re search.

• The bucket sort is rea sona bly sim ple to con vert to non -
in te ger gains, but the pro cess re lies on be ing able to es -
ti mate the maxi mum gain. If this is not pos si ble, it may
not be easy to gen er ate a good scal ing that sepa rates
ver ti ces of dif fer ent gains into dif fer ent buck ets.

5.3 CONCLUSION AND FUTURE RESEARCH

We have shown that the mul ti level strat egy can be modi -
fied to op ti mize for the as pect ra tio. In Sec tion 2, we gave
a defi ni tion of as pect ra tio and showed how the graph
could be modi fied to take AR into ac count. In Sec tion 3.2,
we de scribed three match ing al go rithms (modi fi ca tions
of those al ready in the lit era ture) that can be used to take
AR into ac count and in Sec tion 3.3 con cluded that if it is
not taken into ac count (i.e., ran dom match ing), the same
qual ity of re sults can not be ex pected. In Sec tion 4.3, we
de scribed four ways of in cor po rat ing AR into a KL- based
op ti mi za tion al go rithm. We then dem on strated in Sec tion
4.4 that we can ap proxi mate the cost func tion to lo cal ize
the up dat ing of gains rea sona bly suc cess fully, pro vided
that the mesh grad ing is not too high. We also showed that
we can also lo cal ize the up dat ing of gains by just ig nor ing
non ad ja cent ver ti ces and con cluded that full up dat ing of
gains does not pro vide any sig nifi cant ad van tages (and
costs a lot more). We also de scribed, in Sec tion 4.5, how
to use the bucket sort ing of Fi duc cia and Mat they ses
(1982) for non- in te ger gains. Fi nally, in Sec tion 5.1, we
showed that par ti tions with good sub do main as pect ra tios
can vary greatly from those with a low edge cut.

To fully vali date the method, it would be in ter est ing to
meas ure the cor re la tion be tween the defi ni tion of as pect
ra tio used here and con ver gence in the solver and ver ify
that it does in deed pro vide the bene fits for DD pre con di -
tion ers that other re search ers, us ing dif fer ent defi ni tions
of as pect ra tio, sug gest (e.g., Far hat, Ma man, and Brown,
1995; Van der strae ten et al., 1996). It would also be in ter -
est ing to ex tend the ideas to in ves ti gate the shap ing of sub -
do mains to re flect ani sotropic be hav ior. Fi nally, al though
a par al lel ver sion of JOS TLE ex ists (e.g., Wal shaw, Cross, 
and Ev er ett, 1997), it is not clear how well AR op ti mi za -

tion, with its more global cost func tion, will work in par -
al lel, and this is an other di rec tion for fu ture re search.
Some re lated work on AR op ti mi za tion al ready ex ists in
the con text of a par al lel dy namic adap tive mesh en vi ron -
ment (Diek mann, Meyer, and Mo nien, 1998; Diek mann,
Schlim bach, and Wal shaw, 1998; Schlim bach, 1998), but
none of this work in volves mul ti level meth ods, so the
ques tion still arises whether par al lel mul ti level tech -
niques can help in the op ti mi za tion.

BIOGRAPHIES

Chris Wal shaw is a Sen ior Re search Fel low in the School of
Com put ing and Mathe mati cal Sci ences at the Uni ver sity of
Green wich. He gradu ated from Bath Uni ver sity with a BSc in
Mathe mat ics and then moved to Ed in burgh where he gained an
MSc from Ed in burgh Uni ver sity and a PhD from Heriot- Watt
Uni ver sity, where his doc toral the sis con cerned par al lel al go -
rithms for sys tems of dif fer en tial equa tions. His post doc toral
work has ex tended this theme into par al lel meth ods for adap tive
un struc tured meshes and, in par ticu lar, mesh par ti tion ing. Since
join ing the Uni ver sity of Green wich in 1993, he has de vel oped
the publically- available JOS TLE mesh par ti tion ing soft ware.
He is the author of some 45 re search pa pers.

Mark Cross is Pro fes sor of Nu meri cal Mod el ling and Di rec -
tor of the Cen tre for Nu meri cal Mod el ling and Proc ess Analy sis
in the School of Com put ing and Mathe mati cal Sci ences at the
Uni ver sity of Green wich. The cen tre has about 100 staff and
gradu ate stu dents of which about 10 are as so ci ated with the Par -
al lel Proc ess ing Group, whose work is fo cussed on the de vel op -
ment of soft ware tools to sup port the ex ploi ta tion of such sys -
tems by com pu ta tional mod el ling soft ware. Pro fes sor Cross
was edu cated at the Uni ver sity of Wales, Car diff and re ceived a
PhD in 1972 for work on the mod el ling of semi con duc tor la sers.
Since then he has worked in in dus try and aca de mia in both the
UK and USA and has been at Green wich since 1982. His re -
search in ter ests cover com pu ta tional mod el ling of met als/ma te -
ri als pro cesses, com pu ta tional me chan ics al go rithms, and soft -
ware tools and the ex ploi ta tion of HPC sys tems. The edi tor of the
ar chi val jour nal, Ap plied Mathe mati cal Mod el ling, pub lished
by El sevier, he is the author of some 200 re search pub li ca tions.

Ralf Diek mann re ceived his Di ploma in com puter sci ence
and elec tri cal en gi neer ing from the Uni ver sity of Pad er born,
Ger many in 1991. Dur ing his di ploma, he de vel oped par al lel al -
go rithms for com bi na to rial op ti mi za tion prob lems, es pe cially
par al lel Simu lated An neal ing al go rithms. From 1991 to 1998,
he worked as re search as sis tant in the group of Burk hard Mo -
nien in Pad er born where his main re search ar eas were al go -
rithms for graph par ti tion ing, dis trib uted dy namic load bal anc -
ing, and par al lel com bi na to rial op ti mi za tion. In these ar eas, he
has pub lished more than 30 pa pers in in ter na tional con fer ence
pro ceed ings and jour nals. In 1998, he re ceived his Ph.D. in com -
puter sci ence for his work on load bal anc ing strate gies for data

352 COM PUT ING AP PLI CA TIONS



par al lel ap pli ca tions. Since 1998, he has been a re search staff
mem ber of the cor po rate reasearch de part ment of Hilti AG in
Liech ten stein. His re spon si bili ties in clude su per comuting, ef fi -
cient al go rithms and par al lel al go rithms for dy namic fi nite ele -
ment simu la tions.

Frank Schlim bach is cur rently study ing for a PhD in the
School of Com put ing and Mathe mati cal Sci ences at the Uni ver -
sity of Green wich. He gradu ated from the De part ment of Mathe -
mat ics and Com puter Sci ence at the Uni ver sity of Pad er born
with a Di ploma in Com puter Sci ence. He has been de vel op ing
the load bal anc ing soft ware for the Pad FEM proj ect, an ob ject
ori ented en vi ron ment for par al lel adap tive fi nite ele ment analy -
sis. He is the author of around 10 re search pub li ca tions.

NOTE
1. Diek mann, Meyer, and Mo nien (1998) and Diek mann, Schlim bach,

and Wal shaw (1998) sug gest the value of 1.40 us ing the square/cube-
 based defi ni tion of AR in Sec tion 2.2—this is equiva lent to 1.57 us ing the
cir cle/sphere- based defi ni tion.
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