
Multiphase Mesh Partitioning for Parallel

Computational Mehanis Codes

C. Walshaw, M. Cross, and K. MManus

Shool of Computing and Mathematial Sienes, University of Greenwih,

Old Royal Naval College, Greenwih, London, SE10 9LS, UK.

C.Walshaw�gre.a.uk, URL: http://www.gre.a.uk/�.walshaw

Abstrat. We onsider the load-balaning problems whih arise from

parallel sienti� odes ontaining multiple omputational phases, or

loops over subsets of the data, whih are separated by global synhroni-

sation points. We motivate, derive and desribe the implementation of

an approah whih we refer to as the multiphase mesh partitioning strat-

egy to address suh issues. The tehnique is tested on example meshes

ontaining multiple omputational phases and it is demonstrated that

our method an ahieve high quality partitions where a standard mesh

partitioning approah fails.

Keywords: graph-partitioning, load-balaning, parallel multiphysis.

1 Introdution

The need for mesh partitioning arises naturally in many �nite element and �-

nite volume omputational mehanis (CM) appliations. Meshes omposed of

elements suh as triangles or tetrahedra are often better suited than regularly

strutured grids for representing ompletely general geometries and resolving

wide variations in behaviour via variable mesh densities. Meanwhile, the mod-

elling of omplex behaviour patterns means that the problems are often too large

to �t onto serial omputers, either beause of memory limitations or omputa-

tional demands, or both. Distributing the mesh aross a parallel omputer so

that the omputational load is evenly balaned and the data loality maximised

is known as mesh partitioning. It is well known that this problem is NP-hard

(i.e. annot be solved in polynomial time, [3℄), so in reent years muh attention

has been foused on developing heuristi methods, many of whih are based on

a graph orresponding to the ommuniation requirements of the mesh, e.g. [4℄.

1.1 Multiphase partitioning { motivation

Typially the load-balane onstraint { that the omputational load is evenly

balaned { is simply satis�ed by ensuring that eah proessor has an approxi-

mately equal share of the mesh entities (e.g. the mesh elements, suh as triangles



global convergence

solid/stress solver

global convergence

fluid/flow solver

another timestep?

y

y

n

n

y
n

fluid/flow solid/stress

processor 0 processor 1

(b)

(a)

proc 0

proc 1

(c)

Fig. 1. An example of a multiphysis problem

or tetrahedra, or the mesh nodes). Even in the ase where di�erent mesh en-

tities require di�erent omputational solution time (e.g. boundary nodes and

internal nodes) the balaning problem an still be addressed by weighting the

orresponding graph verties and distributing the graph weight equally. Unfor-

tunately, for some real appliations the proessor load an also depend on many

other fators suh as data aess patterns but sine these are a funtion of the

�nal partition, it is not possible to estimate suh osts a priori and we do not

address this issue here. We therefore onsider only those appliations for whih

a reasonably aurate weighting of the graph, related to omputational ost, an

be realised. However even for suh appliations, as inreasingly omplex solution

methods are developed, there is a lass of solvers for whih suh simple models

of omputational ost break down.

Consider the example shown in Figure 1(a) with a partition for 2 proes-

sors indiated by the dotted line. This partition might normally be onsidered

of good quality but for the solution algorithm in Figure 1(b) it is ompletely

unsuitable. As Figure 1() shows, during the uid/ow phase of the alulation,

proessor 1 has relatively little work to do and indeed during the solid/stress

phase proessor 0 has no work at all. Furthermore, proessor 1 is not able to

start the solid/stress alulation until the uid/ow part has terminated beause

of the onvergene hek, a global synhronisation point (when all the proessors

ommuniate as a group).

In fat it is these multiple loops over subsets of the mesh entities inter-

spersed by global ommuniations that haraterise this modi�ed mesh parti-



tioning problem. If, for example, all the loops in Figure 1(b) were over all the

mesh entities (as sometimes happens in odes of this nature when variables are

set to zero in regions where a given phenomenon does not our { e.g. ow in

a solid) suh balaning problems would not arise. Similarly, if in Figure 1(b)

there were no global onvergene heks, so that a proessor ould ommene

on the stress solution immediately after the ow solution had onverged loally,

the problem would be removed, although the ow & stress regions might need

to be weighted di�erently. In the simple example in Figure 1 an obvious (and

relatively good) load-balaning strategy, therefore, is simply to partition eah

region (i.e. liquid & solid) of the domain separately so that eah proessor has

an equal number of entities from eah region. However, in more omplex ases,

for example where the regions relating to di�erent omputational phases overlap,

this may fail to provide a good solution and an advaned strategy is required.

We refer to this modi�ed partitioning problem as the multiphase mesh par-

titioning problem (MMPP) beause the underlying solver has multiple distint

omputational subphases, eah of whih must be balaned separately. Typially

MMPPs arise from multiphysis or multiphase modelling (e.g. [7℄) where dif-

ferent parts of the omputational domain exhibit di�erent physial behaviour

and/or material properties. They an also arise in ontat-impat modelling,

e.g. [6℄, whih usually involves the solution of loalised stress-strain �nite el-

ement alulations over the entire mesh together with a muh more omplex

ontat-impat detetion phase over areas of possible penetration.

1.2 Overview

In this paper we disuss a strategy for dealing with MMPPs, whih uses existing

single-phase mesh partitioning algorithms as `blak box' solvers, to partition the

problem phase by phase, eah partition based on those of the previous phases.

The details of this approah are desribed in Setion 2, in partiular the ne-

essary vertex lassi�ation sheme (x2.1) and an outline of the implementation

(x2.2). In Setion 3 we present results for the tehniques on an illustrative set

of example MMPPs. Finally, in Setion 4 we summarise the paper and mention

some suggestions for further researh.

Restritions on spae prelude a full disussion of related work (although

some di�erent approahes are reviewed in [10℄). However most losely related to

the work presented here is the multi-onstraint partitioning method of Karypis

& Kumar, [5℄, a di�erent and in some ways more general approah that an

be applied to the multiphase partitioning problem. Their idea is to view the

problem as a graph partitioning problem with multiple onstraints (in this ase

load-balaning onstraints). As here the verties of the graph have a vetor of

weights, in this ase representing the ontribution to eah balaning onstraint.

However, in ontrast to the methods presented here, Karypis & Kumar solve the

problem in a single omputation (rather than on a phase by phase basis).



2 Multiphase partitioning

In this setion we desribe a strategy whih addresses the multiphase partitioning

problem, the priniple of whih is to partition eah phase separately, but use the

results of previous phases to inuene the partition of the urrent one. The

partitioner whih we use to arry out the partitioning of eah phase is outlined

in [10℄; however, in priniple any partition optimisation algorithm ould be used.

2.1 Vertex lassi�ation

To talk about multiphase partitioning and more spei�ally our methods for

addressing the problem we need to �rst lassify the graph verties aording to

phase. For ertain appliations the mesh entities (e.g. nodes or elements) will

eah belong to one phase only, e.g. Figure 2(a), but it is quite possible for a mesh

entity, and hene the graph vertex representing it, to belong to more than one

phase. For this reason, if F is the number of phases (i.e. the number of distint

omputational subphases separated by global synhronisation points { see x1.1),

we require for eah vertex v that the input graph inludes a vetor of length

F , ontaining non-negative integer weights that represent the ontribution of

that vertex to the omputational load in eah phase. Thus if jvj

i

represents the

ontribution of vertex v to phase i then the weight vetor for a vertex v is given

by w = [jvj

1

; jvj

2

; : : : ; jvj

F

℄ (this is exatly the same as for the multi-onstraint

paradigm of Karypis & Kumar, [5℄). For the example in Figure 2(a) then, the

phase 1 mesh nodes would be input with the vetor [1; 0℄ while the phase 2 nodes

would be input with the vetor [0; 1℄ (assuming eah node ontributes a weight

of 1 to their respetive phases). We then de�ne the vertex type to be the lowest

value of i for whih jvj

i

> 0, i.e.

type(v) =

�

min i suh that jvj

i

> 0 for i = 1; : : : ; F

0 if jvj

i

= 0 for i = 1; : : : ; F:

(1)

Thus in the ase when the mesh phases are distint (e.g. Figure 2) the vertex

type is simply the phase of the mesh entity that it represents; when the mesh

entities belong to more than one phase then the vertex type is the �rst phase in

whih its mesh entity is ative. Note that it is entirely possible that jvj

i

= 0 for

all i = 1; : : : ; F (although this might appear to be unlikely it did in fat our

in the very �rst tests of the tehnique that we tried with a real appliation, [10℄)

and we refer to suh verties as type zero verties. For lari�ation then, a mesh

entity an belong to multiple phases, but the graph vertex whih represents it

an only be of one type t = 0; : : : ; F , where F is the number of phases.

2.2 Multiphase partitioning strategy

To explain the multiphase partitioning strategy, onsider the example mesh

shown in Figure 2(a) whih has two phases and for whih we are required to

partition the mesh nodes into 4 subdomains. The basis of the strategy is to �rst



activestationaryactivestationary

phase 1 phase 2

(c) (d)

(a) (b)

Fig. 2. Multiphase partitioning of a simple two phase mesh: (a) the two phases; (b)

the partition of the type 1 verties; () the input graph for the type 2 verties; (d) the

same input graph with stationary verties ondensed

partition the type 1 verties (eah representing a mesh node), shown partitioned

in Figure 2(b) and then partition the type 2 verties. However, we do not simply

partition the type 2 verties independent of the type 1 partition; to enhane data

loality it makes sense to inlude the partitioned type 1 verties in the alula-

tion and use the graph shown in Figure 2() as input for the type 2 partitioning.

We retain the type 1 partition by requiring that the partitioner may not hange

the proessor assignment of any type 1 vertex. We thus refer to those verties

whih are not allowed to migrate (i.e. those whih have already been partitioned

in a previous phase) as stationary verties. Non-stationary verties whih belong

to the urrent phase are referred to as ative.

Vertex ondensation. Beause a large proportion of the verties may be

`stationary' (i.e. the partitioner is not allowed to migrate them) it is rather inef-

�ient to inlude all suh verties in the alulation. For this reason we ondense

all stationary verties assigned to a proessor p down to a single stationary

super-vertex as shown in Figure 2(d). This an onsiderably redue the size of

the input graph.



Graph edges. Edges between stationary and ative verties are retained to

enhane the interphase data loality, however, as an be seen in Figure 2(d),

edges between the ondensed stationary verties are omitted from the input

graph.There is a good reason for this; our partitioner inludes an integral load-

balaning algorithm (to remove imbalane arising either from an existing par-

tition of the input graph or internally as part of the multilevel proess) whih

shedules load to be migrated along the edges of the subdomain graph. If the

edges between stationary verties are left in the input graph, then orresponding

edges appear in the subdomain graph and hene the load-balaner may shedule

load to migrate between these subdomains. However, if these inter-subdomain

edges arise solely beause of the edges between stationary verties then there

may be no ative verties to realise this sheduled migration and the balaning

may fail.

Implementation. Although we have illustrated the multiphase partitioning

algorithm with a two phase example, the tehnique an learly be extended to

arbitrary numbers of phases. The multiphase mesh partitioning paradigm then

onsists of a wrapper around a `blak box' mesh partitioner. As the wrapper

simply onstruts a series of F subgraphs, one for eah phase, implementation is

straightforward, even in parallel, [10℄. Furthermore, the modi�ations required

for the partitioner are relatively minor and essentially onsist of preventing sta-

tionary verties from migrating. Details an be found in [10℄.

3 Experimental results

In this setion we give illustrative results by testing the multiphase partitioning

strategy on a set of arti�ial but not unrealisti examples of distint two-phase

problems. By distint we mean that the omputational phase regions do not

overlap and are separated by a relatively small interfae. Suh problems are

typial of many multiphysis omputational mehanis appliations suh as so-

lidi�ation, e.g [1℄. Further results for the multiphase sheme on other problem

types (suh as those whih arise when di�erent alulations take plae on mesh

nodes from those taking plae on mesh elements, together with some examples

from a real-life ontat-impat simulation) an be found in [2, 10℄.

Table 1. Distint phase meshes

name V

1

V

2

E desription

512x256 65536 65536 261376 2D regular grid

rak 4195 6045 30380 2D nodal mesh

dime20 114832 110011 336024 2D dual mesh

64x32x32 32768 32768 191488 3D regular grid

brak2 33079 29556 366559 3D nodal mesh

mesh100 51549 51532 200976 3D dual mesh



The example problems here are onstruted by taking a set of 2D & 3D

meshes, some regular grids and some with irregular (or unstrutured) adjaen-

ies and geometrially biseting them so that one half is assigned to phase 1

and the other half to phase 2. Table 1 gives a summary of the mesh sizes and

lassi�ation, where V

1

& V

2

represent the number of type 1 & type 2 verties, re-

spetively, and E is the number of edges. These are possibly the simplest form of

two-phase problem and provide a lear demonstration of the need for multiphase

mesh partitioning.

The algorithms are all implemented within the partitioning tool JOSTLE

1

and we have tested the meshes with 3 di�erent partitioning variants for 3 di�erent

values of P , the number of subdomains/proessors. The �rst of these partitioners

is simply JOSTLE's default multilevel partitioning sheme, [8℄, whih takes no

aount of the di�erent phases and is referred to here as JOSTLE-S. The mul-

tiphase version, JOSTLE-M and the parallel multiphase version, PJOSTLE-M,

then inorporate the multiphase partitioning paradigm as desribed here.

The results in Table 2 show for eah mesh and value of P the proportion of

ut edges, jE



j=jEj, (whih gives an indiation of the partition quality in terms

of ommuniation overhead) and the imbalane for the two phases, �

1

& �

2

respetively. These three quality metris are then averaged for eah partitioner

and value of P .

As suggested, JOSTLE-S, whilst ahieving the best minimisation of ut-

weight, ompletely fails to balane the two phases (sine it takes no aount

of them). On average (and as one might expet from the onstrution of the

problem) the imbalane is approximately 2 { i.e. the largest subdomain is twie

the size that it should be and so the appliation might be expeted to run twie

as slowly as a well partitioned version (negleting any ommuniation overhead).

This is beause the single phase partitioner ignores the di�erent graph regions

and (approximately) partitions eah phase between half of the proessors. Both

the multiphase partitioners, however, manage to ahieve good balane, although

note that all the partitioners have an imbalane tolerane, set at run-time, of

1.03 { i.e. any imbalane below this is onsidered negligible. This is partiularly

notieable for the serial version, JOSTLE-M, whih, beause of its global nature

is able to utilise the imbalane tolerane to ahieve higher partition quality (see

[8℄) and thus results in imbalanes lose to (but not exeeding) the threshold

of 1.03. The parallel partitioner, PJOSTLE-M, on the other hand, produes

imbalanes muh loser to 1.0 (perfet balane).

In terms of the ut-weight, JOSTLE-M produes partitions about 28% worse

on average than JOSTLE-S and those of PJOSTLE-M are about 35% worse.

These are to be expeted as a result of the more omplex partitioning problem

and are in line with the 20-70% deterioration reported by Karypis & Kumar for

their multi-onstraint algorithm, [5℄.

We do not show run time results here and indeed the multiphase algorithm

is not partiularly time-optimised but, for example, for 'mesh100' and P = 16,

the run times on a DEC Alpha workstation were 3.30 seonds for JOSTLE-M

1

available from http://www.gre.a.uk/jostle



Table 2. Distint phase results

P = 4 P = 8 P = 16

mesh jE



j=jEj �

1

�

2

jE



j=jEj �

1

�

2

jE



j=jEj �

1

�

2

JOSTLE-S: jostle single-phase

512x256 0.004 2.000 2.000 0.006 2.000 2.000 0.011 2.000 2.000

rak 0.015 1.906 1.614 0.026 2.434 1.692 0.041 2.445 1.709

dime20 0.001 1.881 1.726 0.003 1.986 2.036 0.004 1.972 2.049

64x32x32 0.023 2.000 2.000 0.038 2.000 2.000 0.052 2.000 2.000

brak2 0.008 1.932 2.096 0.023 1.937 2.138 0.037 1.949 2.145

mesh100 0.008 2.012 1.987 0.016 2.011 2.015 0.025 2.034 2.005

average 0.010 1.955 1.904 0.019 2.061 1.980 0.028 2.067 1.985

JOSTLE-M: jostle multiphase

512x256 0.004 1.025 1.026 0.009 1.028 1.019 0.013 1.028 1.026

rak 0.016 1.025 1.027 0.030 1.025 1.028 0.055 1.027 1.029

dime20 0.002 1.027 1.015 0.003 1.020 1.025 0.006 1.016 1.018

64x32x32 0.027 1.026 1.029 0.041 1.030 1.029 0.063 1.026 1.030

brak2 0.021 1.010 1.014 0.034 1.030 1.030 0.052 1.029 1.026

mesh100 0.011 1.023 1.021 0.020 1.022 1.029 0.034 1.023 1.029

average 0.013 1.023 1.022 0.023 1.026 1.027 0.037 1.025 1.026

PJOSTLE-M: parallel jostle multiphase

512x256 0.006 1.000 1.000 0.010 1.000 1.000 0.016 1.000 1.001

rak 0.016 1.000 1.000 0.036 1.000 1.001 0.055 1.000 1.000

dime20 0.002 1.000 1.000 0.004 1.000 1.000 0.007 1.001 1.001

64x32x32 0.029 1.000 1.000 0.046 1.000 1.002 0.066 1.002 1.013

brak2 0.020 1.000 1.001 0.033 1.000 1.002 0.052 1.001 1.005

mesh100 0.011 1.000 1.000 0.021 1.000 1.000 0.033 1.002 1.001

average 0.014 1.000 1.000 0.025 1.000 1.001 0.038 1.001 1.004

and 2.22 seonds for JOSTLE-S. For the same mesh in parallel on a Cray T3E

(with slower proessors) the run times were 5.65 seonds for PJOSTLE-M and

3.27 for PJOSTLE-S (the standard single-phase parallel version desribed in [9℄).

On average the JOSTLE-M results were about 1.5 times slower than those of

JOSTLE-S and PJOSTLE-M was about 2 times slower than PJOSTLE-S. This

is well in line with the 1.5 to 3 times performane degradation suggested for the

multi-onstraint algorithm, [5℄.

4 Summary and future researh

We have desribed a new approah for addressing the load-balaning issues of CM

odes ontaining multiple omputational phases. This approah, the multiphase

mesh partitioning strategy, onsists of a graph manipulation wrapper around an

almost unmodi�ed `blak box' mesh partitioner whih is used to partition eah

phase individually. As suh the strategy is relatively simple to implement and

ould, in priniple, reuse existing features of the partitioner, suh as minimising

data migration in dynami repartitioning ontext.



We have tested the strategy on examples of MMPPs and demonstrated that

it an sueed in produing high quality, balaned partitions where a standard

mesh partitioner simply fails (as it takes no aount of the di�erent phases).

The multiphase partitioner does however take somewhat longer than the single

phase version, typially 1.5-2 times as long although we do not believe that

this relationship an be quanti�ed in any meaningful way. We have not tested

the strategy exhaustively and aknowledge that it is not too diÆult to derive

MMPPs for whih it will not sueed. In fat, in this respet it is like many

other heuristis (inluding most mesh partitioners) whih work for a broad lass

of problems but for whih ounter examples to any onlusions an often be

found.

Some examples of the multiphase mesh partitioning strategy in ation for

ontat-impat problems an be found in [2℄, but with regard to future work

in this area, it would be useful to investigate its performane in a variety of

other genuine CM odes. In partiular, it would be useful to look at examples

for whih it does not work and either try and address the problems or at least

haraterise what features it annot ope with.

Referenes

1. C. Bailey, P. Chow, M. Cross, Y. Fryer, and K. A. Perileous. Multiphysis Mod-

elling of the Metals Casting Proess. Pro. Roy. So. London Ser. A, 452:459{486,

1995.

2. A. Basermann, J. Fingberg, G. Lonsdale, B. Maerten, and C. Walshaw. Dynami

Multi-Partitioning for Parallel Finite Element Appliations. In E. H. D'Hollander

et al., editor, Parallel Computing: Fundamentals & Appliations, Pro. Intl. Conf.

ParCo'99, Delft, Netherlands, pages 259{266. Imperial College Press, London,

2000.

3. M. R. Garey, D. S. Johnson, and L. Stokmeyer. Some simpli�ed NP-omplete

graph problems. Theoret. Comput. Si., 1:237{267, 1976.

4. B. Hendrikson and R. Leland. A Multilevel Algorithm for Partitioning Graphs.

In S. Karin, editor, Pro. Superomputing '95, San Diego. ACM Press, New York,

NY 10036, 1995.

5. G. Karypis and V. Kumar. Multilevel Algorithms for Multi-Constraint Graph

Partitioning. TR 98-019, Dept. Comp. Si., Univ. Minnesota, Minneapolis, MN

55455, 1998.

6. G. Lonsdale, B. Elsner, J. Clinkemaillie, S. Vlahoutsis, F. de Bruyne, and

M. Holzner. Experienes with Industrial Crashworthiness Simulation using the

Portable, Message-Passing PAM-CRASH Code. In High-Performane Computing

and Networking (Pro. HPCN'95), volume 919 of LNCS, pages 856{862. Springer,

Berlin, 1995.

7. K. MManus, C. Walshaw, M. Cross, and S. P. Johnson. Unstrutured Mesh

Computational Mehanis on DM Parallel Platforms. Z. Angew. Math. Meh.,

76(S4):109{112, 1996.

8. C. Walshaw and M. Cross. Mesh Partitioning: a Multilevel Balaning and Re�ne-

ment Algorithm. SIAM J. Si. Comput., 22(1):63{80, 2000. (originally published

as Univ. Greenwih Teh. Rep. 98/IM/35).



9. C. Walshaw and M. Cross. Parallel Optimisation Algorithms for Multilevel Mesh

Partitioning. Parallel Comput., 26(12):1635{1660, 2000. (originally published as

Univ. Greenwih Teh. Rep. 99/IM/44).

10. C. Walshaw, M. Cross, and K. MManus. Multiphase Mesh Partitioning. Appl.

Math. Modelling, 25(2):123{140, 2000. (originally published as Univ. Greenwih

Teh. Rep. 99/IM/51).


