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Abstract. We consider the load-balancing problems which arise from
parallel scientific codes containing multiple computational phases, or
loops over subsets of the data, which are separated by global synchroni-
sation points. We motivate, derive and describe the implementation of
an approach which we refer to as the multiphase mesh partitioning strat-
egy to address such issues. The technique is tested on example meshes
containing multiple computational phases and it is demonstrated that
our method can achieve high quality partitions where a standard mesh
partitioning approach fails.
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1 Introduction

The need for mesh partitioning arises naturally in many finite element and fi-
nite volume computational mechanics (CM) applications. Meshes composed of
elements such as triangles or tetrahedra are often better suited than regularly
structured grids for representing completely general geometries and resolving
wide variations in behaviour via variable mesh densities. Meanwhile, the mod-
elling of complex behaviour patterns means that the problems are often too large
to fit onto serial computers, either because of memory limitations or computa-
tional demands, or both. Distributing the mesh across a parallel computer so
that the computational load is evenly balanced and the data locality maximised
is known as mesh partitioning. It is well known that this problem is NP-hard
(i.e. cannot be solved in polynomial time, [3]), so in recent years much attention
has been focused on developing heuristic methods, many of which are based on
a graph corresponding to the communication requirements of the mesh, e.g. [4].

1.1 Multiphase partitioning — motivation

Typically the load-balance constraint — that the computational load is evenly
balanced — is simply satisfied by ensuring that each processor has an approxi-
mately equal share of the mesh entities (e.g. the mesh elements, such as triangles
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Fig. 1. An example of a multiphysics problem

or tetrahedra, or the mesh nodes). Even in the case where different mesh en-
tities require different computational solution time (e.g. boundary nodes and
internal nodes) the balancing problem can still be addressed by weighting the
corresponding graph vertices and distributing the graph weight equally. Unfor-
tunately, for some real applications the processor load can also depend on many
other factors such as data access patterns but since these are a function of the
final partition, it is not possible to estimate such costs a priori and we do not
address this issue here. We therefore consider only those applications for which
a reasonably accurate weighting of the graph, related to computational cost, can
be realised. However even for such applications, as increasingly complex solution
methods are developed, there is a class of solvers for which such simple models
of computational cost break down.

Consider the example shown in Figure 1(a) with a partition for 2 proces-
sors indicated by the dotted line. This partition might normally be considered
of good quality but for the solution algorithm in Figure 1(b) it is completely
unsuitable. As Figure 1(c) shows, during the fluid/flow phase of the calculation,
processor 1 has relatively little work to do and indeed during the solid/stress
phase processor 0 has no work at all. Furthermore, processor 1 is not able to
start the solid/stress calculation until the fluid /flow part has terminated because
of the convergence check, a global synchronisation point (when all the processors
communicate as a group).

In fact it is these multiple loops over subsets of the mesh entities inter-
spersed by global communications that characterise this modified mesh parti-



tioning problem. If, for example, all the loops in Figure 1(b) were over all the
mesh entities (as sometimes happens in codes of this nature when variables are
set to zero in regions where a given phenomenon does not occur — e.g. flow in
a solid) such balancing problems would not arise. Similarly, if in Figure 1(b)
there were no global convergence checks, so that a processor could commence
on the stress solution immediately after the flow solution had converged locally,
the problem would be removed, although the flow & stress regions might need
to be weighted differently. In the simple example in Figure 1 an obvious (and
relatively good) load-balancing strategy, therefore, is simply to partition each
region (i.e. liquid & solid) of the domain separately so that each processor has
an equal number of entities from each region. However, in more complex cases,
for example where the regions relating to different computational phases overlap,
this may fail to provide a good solution and an advanced strategy is required.

We refer to this modified partitioning problem as the multiphase mesh par-
titioning problem (MMPP) because the underlying solver has multiple distinct
computational subphases, each of which must be balanced separately. Typically
MMPPs arise from multiphysics or multiphase modelling (e.g. [7]) where dif-
ferent parts of the computational domain exhibit different physical behaviour
and/or material properties. They can also arise in contact-impact modelling,
e.g. [6], which usually involves the solution of localised stress-strain finite el-
ement calculations over the entire mesh together with a much more complex
contact-impact detection phase over areas of possible penetration.

1.2 Overview

In this paper we discuss a strategy for dealing with MMPPs, which uses existing
single-phase mesh partitioning algorithms as ‘black box’ solvers, to partition the
problem phase by phase, each partition based on those of the previous phases.
The details of this approach are described in Section 2, in particular the nec-
essary vertex classification scheme (§2.1) and an outline of the implementation
(§2.2). In Section 3 we present results for the techniques on an illustrative set
of example MMPPs. Finally, in Section 4 we summarise the paper and mention
some suggestions for further research.

Restrictions on space preclude a full discussion of related work (although
some different approaches are reviewed in [10]). However most closely related to
the work presented here is the multi-constraint partitioning method of Karypis
& Kumar, [5], a different and in some ways more general approach that can
be applied to the multiphase partitioning problem. Their idea is to view the
problem as a graph partitioning problem with multiple constraints (in this case
load-balancing constraints). As here the vertices of the graph have a vector of
weights, in this case representing the contribution to each balancing constraint.
However, in contrast to the methods presented here, Karypis & Kumar solve the
problem in a single computation (rather than on a phase by phase basis).



2 Multiphase partitioning

In this section we describe a strategy which addresses the multiphase partitioning
problem, the principle of which is to partition each phase separately, but use the
results of previous phases to influence the partition of the current one. The
partitioner which we use to carry out the partitioning of each phase is outlined
in [10]; however, in principle any partition optimisation algorithm could be used.

2.1 Vertex classification

To talk about multiphase partitioning and more specifically our methods for
addressing the problem we need to first classify the graph vertices according to
phase. For certain applications the mesh entities (e.g. nodes or elements) will
each belong to one phase only, e.g. Figure 2(a), but it is quite possible for a mesh
entity, and hence the graph vertex representing it, to belong to more than one
phase. For this reason, if F' is the number of phases (i.e. the number of distinct
computational subphases separated by global synchronisation points — see §1.1),
we require for each vertex v that the input graph includes a vector of length
F, containing non-negative integer weights that represent the contribution of
that vertex to the computational load in each phase. Thus if |v|; represents the
contribution of vertex v to phase i then the weight vector for a vertex v is given
by w = [|v]1, |v]a, ..., |v|F] (this is exactly the same as for the multi-constraint
paradigm of Karypis & Kumar, [5]). For the example in Figure 2(a) then, the
phase 1 mesh nodes would be input with the vector [1,0] while the phase 2 nodes
would be input with the vector [0,1] (assuming each node contributes a weight
of 1 to their respective phases). We then define the vertex type to be the lowest
value of ¢ for which |v]; > 0, i.e.

type(v) = min< such that |[v|; >0 fori=1,...,F (1)
P =0 if ;=0 fori=1,...,F.

Thus in the case when the mesh phases are distinct (e.g. Figure 2) the vertex
type is simply the phase of the mesh entity that it represents; when the mesh
entities belong to more than one phase then the vertex type is the first phase in
which its mesh entity is active. Note that it is entirely possible that |v|; = 0 for
all i = 1,..., F (although this might appear to be unlikely it did in fact occur
in the very first tests of the technique that we tried with a real application, [10])
and we refer to such vertices as type zero vertices. For clarification then, a mesh
entity can belong to multiple phases, but the graph vertex which represents it
can only be of one type t =0, ..., F, where F' is the number of phases.

2.2 Multiphase partitioning strategy

To explain the multiphase partitioning strategy, consider the example mesh
shown in Figure 2(a) which has two phases and for which we are required to
partition the mesh nodes into 4 subdomains. The basis of the strategy is to first
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Fig. 2. Multiphase partitioning of a simple two phase mesh: (a) the two phases; (b)
the partition of the type 1 vertices; (¢) the input graph for the type 2 vertices; (d) the
same input graph with stationary vertices condensed

partition the type 1 vertices (each representing a mesh node), shown partitioned
in Figure 2(b) and then partition the type 2 vertices. However, we do not simply
partition the type 2 vertices independent of the type 1 partition; to enhance data
locality it makes sense to include the partitioned type 1 vertices in the calcula-
tion and use the graph shown in Figure 2(c) as input for the type 2 partitioning.
We retain the type 1 partition by requiring that the partitioner may not change
the processor assignment of any type 1 vertex. We thus refer to those vertices
which are not allowed to migrate (i.e. those which have already been partitioned
in a previous phase) as stationary vertices. Non-stationary vertices which belong
to the current phase are referred to as active.

Vertex condensation. Because a large proportion of the vertices may be
‘stationary’ (i.e. the partitioner is not allowed to migrate them) it is rather inef-
ficient to include all such vertices in the calculation. For this reason we condense
all stationary vertices assigned to a processor p down to a single stationary
super-vertexr as shown in Figure 2(d). This can considerably reduce the size of
the input graph.



Graph edges. Edges between stationary and active vertices are retained to
enhance the interphase data locality, however, as can be seen in Figure 2(d),
edges between the condensed stationary vertices are omitted from the input
graph.There is a good reason for this; our partitioner includes an integral load-
balancing algorithm (to remove imbalance arising either from an existing par-
tition of the input graph or internally as part of the multilevel process) which
schedules load to be migrated along the edges of the subdomain graph. If the
edges between stationary vertices are left in the input graph, then corresponding
edges appear in the subdomain graph and hence the load-balancer may schedule
load to migrate between these subdomains. However, if these inter-subdomain
edges arise solely because of the edges between stationary vertices then there
may be no active vertices to realise this scheduled migration and the balancing
may fail.

Implementation. Although we have illustrated the multiphase partitioning
algorithm with a two phase example, the technique can clearly be extended to
arbitrary numbers of phases. The multiphase mesh partitioning paradigm then
consists of a wrapper around a ‘black box’ mesh partitioner. As the wrapper
simply constructs a series of F' subgraphs, one for each phase, implementation is
straightforward, even in parallel, [10]. Furthermore, the modifications required
for the partitioner are relatively minor and essentially consist of preventing sta-
tionary vertices from migrating. Details can be found in [10].

3 Experimental results

In this section we give illustrative results by testing the multiphase partitioning
strategy on a set of artificial but not unrealistic examples of distinct two-phase
problems. By distinct we mean that the computational phase regions do not
overlap and are separated by a relatively small interface. Such problems are
typical of many multiphysics computational mechanics applications such as so-
lidification, e.g [1]. Further results for the multiphase scheme on other problem
types (such as those which arise when different calculations take place on mesh
nodes from those taking place on mesh elements, together with some examples
from a real-life contact-impact simulation) can be found in [2, 10].

Table 1. Distinct phase meshes

name Vi 1%} E description
512x256 | 65536 65536 261376 2D regular grid
crack 4195 6045 30380 2D nodal mesh

dime20 {114832 110011 336024 2D dual mesh
64x32x32| 32768 32768 191488 3D regular grid
brack2 33079 29556 366559 3D nodal mesh
mesh100 | 51549 51532 200976 3D dual mesh




The example problems here are constructed by taking a set of 2D & 3D
meshes, some regular grids and some with irregular (or unstructured) adjacen-
cies and geometrically bisecting them so that one half is assigned to phase 1
and the other half to phase 2. Table 1 gives a summary of the mesh sizes and
classification, where V; & V5 represent the number of type 1 & type 2 vertices, re-
spectively, and F is the number of edges. These are possibly the simplest form of
two-phase problem and provide a clear demonstration of the need for multiphase
mesh partitioning.

The algorithms are all implemented within the partitioning tool JOSTLE!
and we have tested the meshes with 3 different partitioning variants for 3 different
values of P, the number of subdomains/processors. The first of these partitioners
is simply JOSTLE’s default multilevel partitioning scheme, [8], which takes no
account of the different phases and is referred to here as JOSTLE-S. The mul-
tiphase version, JOSTLE-M and the parallel multiphase version, PJOSTLE-M,
then incorporate the multiphase partitioning paradigm as described here.

The results in Table 2 show for each mesh and value of P the proportion of
cut edges, |E.|/|E|, (which gives an indication of the partition quality in terms
of communication overhead) and the imbalance for the two phases, \i & \a
respectively. These three quality metrics are then averaged for each partitioner
and value of P.

As suggested, JOSTLE-S, whilst achieving the best minimisation of cut-
weight, completely fails to balance the two phases (since it takes no account
of them). On average (and as one might expect from the construction of the
problem) the imbalance is approximately 2 — i.e. the largest subdomain is twice
the size that it should be and so the application might be expected to run twice
as slowly as a well partitioned version (neglecting any communication overhead).
This is because the single phase partitioner ignores the different graph regions
and (approximately) partitions each phase between half of the processors. Both
the multiphase partitioners, however, manage to achieve good balance, although
note that all the partitioners have an imbalance tolerance, set at run-time, of
1.03 — i.e. any imbalance below this is considered negligible. This is particularly
noticeable for the serial version, JOSTLE-M, which, because of its global nature
is able to utilise the imbalance tolerance to achieve higher partition quality (see
[8]) and thus results in imbalances close to (but not exceeding) the threshold
of 1.03. The parallel partitioner, PJOSTLE-M, on the other hand, produces
imbalances much closer to 1.0 (perfect balance).

In terms of the cut-weight, JOSTLE-M produces partitions about 28% worse
on average than JOSTLE-S and those of PJOSTLE-M are about 35% worse.
These are to be expected as a result of the more complex partitioning problem
and are in line with the 20-70% deterioration reported by Karypis & Kumar for
their multi-constraint algorithm, [5].

We do not show run time results here and indeed the multiphase algorithm
is not particularly time-optimised but, for example, for 'mesh100’ and P = 16,
the run times on a DEC Alpha workstation were 3.30 seconds for JOSTLE-M

! available from http://wuw.gre.ac.uk/jostle



Table 2. Distinct phase results

P=4 P=38 P =16
mesh |Ec|/|E| )\1 )\2 |Ec|/|E| }\1 )\2 |Ec|/|E| )\1 )\2
JOSTLE-S: jostle single-phase
512x256 0.004 2.000 2.000{ 0.006 2.000 2.000f 0.011 2.000 2.000
crack 0.015 1.906 1.614 0.026 2.434 1.692 0.041 2.445 1.709
dime20 0.001 1.881 1.726| 0.003 1.986 2.036| 0.004 1.972 2.049
64x32x32|  0.023 2.000 2.000| 0.038 2.000 2.000| 0.052 2.000 2.000
brack2 0.008 1.932 2.096| 0.023 1.937 2.138| 0.037 1.949 2.145
mesh100 0.008 2.012 1.987 0.016 2.011 2.015 0.025 2.034 2.005
average 0.010 1.955 1.904| 0.019 2.061 1.980[ 0.028 2.067 1.985
JOSTLE-M: jostle multiphase
512x256 0.004 1.025 1.026 0.009 1.028 1.019 0.013 1.028 1.026
crack 0.016 1.025 1.027 0.030 1.025 1.028 0.055 1.027 1.029
dime20 0.002 1.027 1.015| 0.003 1.020 1.025| 0.006 1.016 1.018
64x32x32| 0.027 1.026 1.029| 0.041 1.030 1.029| 0.063 1.026 1.030
brack2 0.021 1.010 1.014 0.034 1.030 1.030 0.052 1.029 1.026
mesh100 0.011 1.023 1.021 0.020 1.022 1.029 0.034 1.023 1.029
average 0.013 1.023 1.022 0.023 1.026 1.027 0.037 1.025 1.026
PJOSTLE-M: parallel jostle multiphase
512x256 0.006 1.000 1.000{ 0.010 1.000 1.000{ 0.016 1.000 1.001
crack 0.016 1.000 1.000| 0.036 1.000 1.001| 0.055 1.000 1.000
dime20 0.002 1.000 1.000{ 0.004 1.000 1.000{ 0.007 1.001 1.001
64x32x32| 0.029 1.000 1.000| 0.046 1.000 1.002| 0.066 1.002 1.013
brack2 0.020 1.000 1.001| 0.033 1.000 1.002| 0.052 1.001 1.005
mesh100 0.011 1.000 1.000{ 0.021 1.000 1.000{ 0.033 1.002 1.001
average 0.014 1.000 1.000{ 0.025 1.000 1.001| 0.038 1.001 1.004

and 2.22 seconds for JOSTLE-S. For the same mesh in parallel on a Cray T3E
(with slower processors) the run times were 5.65 seconds for PJOSTLE-M and
3.27 for PJOSTLE-S (the standard single-phase parallel version described in [9]).
On average the JOSTLE-M results were about 1.5 times slower than those of
JOSTLE-S and PJOSTLE-M was about 2 times slower than PJOSTLE-S. This
is well in line with the 1.5 to 3 times performance degradation suggested for the
multi-constraint algorithm, [5].

4 Summary and future research

We have described a new approach for addressing the load-balancing issues of CM
codes containing multiple computational phases. This approach, the multiphase
mesh partitioning strategy, consists of a graph manipulation wrapper around an
almost unmodified ‘black box’ mesh partitioner which is used to partition each
phase individually. As such the strategy is relatively simple to implement and
could, in principle, reuse existing features of the partitioner, such as minimising
data migration in dynamic repartitioning context.



We have tested the strategy on examples of MMPPs and demonstrated that
it can succeed in producing high quality, balanced partitions where a standard
mesh partitioner simply fails (as it takes no account of the different phases).
The multiphase partitioner does however take somewhat longer than the single
phase version, typically 1.5-2 times as long although we do not believe that
this relationship can be quantified in any meaningful way. We have not tested
the strategy exhaustively and acknowledge that it is not too difficult to derive
MMPPs for which it will not succeed. In fact, in this respect it is like many
other heuristics (including most mesh partitioners) which work for a broad class
of problems but for which counter examples to any conclusions can often be
found.

Some examples of the multiphase mesh partitioning strategy in action for
contact-impact problems can be found in [2], but with regard to future work
in this area, it would be useful to investigate its performance in a variety of
other genuine CM codes. In particular, it would be useful to look at examples
for which it does not work and either try and address the problems or at least
characterise what features it cannot cope with.
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