
Multiphase Mesh Partitioning for Parallel

Computational Me
hani
s Codes

C. Walshaw, M. Cross, and K. M
Manus

S
hool of Computing and Mathemati
al S
ien
es, University of Greenwi
h,

Old Royal Naval College, Greenwi
h, London, SE10 9LS, UK.

C.Walshaw�gre.a
.uk, URL: http://www.gre.a
.uk/�
.walshaw

Abstra
t. We 
onsider the load-balan
ing problems whi
h arise from

parallel s
ienti�
 
odes 
ontaining multiple 
omputational phases, or

loops over subsets of the data, whi
h are separated by global syn
hroni-

sation points. We motivate, derive and des
ribe the implementation of

an approa
h whi
h we refer to as the multiphase mesh partitioning strat-

egy to address su
h issues. The te
hnique is tested on example meshes


ontaining multiple 
omputational phases and it is demonstrated that

our method 
an a
hieve high quality partitions where a standard mesh

partitioning approa
h fails.

Keywords: graph-partitioning, load-balan
ing, parallel multiphysi
s.

1 Introdu
tion

The need for mesh partitioning arises naturally in many �nite element and �-

nite volume 
omputational me
hani
s (CM) appli
ations. Meshes 
omposed of

elements su
h as triangles or tetrahedra are often better suited than regularly

stru
tured grids for representing 
ompletely general geometries and resolving

wide variations in behaviour via variable mesh densities. Meanwhile, the mod-

elling of 
omplex behaviour patterns means that the problems are often too large

to �t onto serial 
omputers, either be
ause of memory limitations or 
omputa-

tional demands, or both. Distributing the mesh a
ross a parallel 
omputer so

that the 
omputational load is evenly balan
ed and the data lo
ality maximised

is known as mesh partitioning. It is well known that this problem is NP-hard

(i.e. 
annot be solved in polynomial time, [3℄), so in re
ent years mu
h attention

has been fo
used on developing heuristi
 methods, many of whi
h are based on

a graph 
orresponding to the 
ommuni
ation requirements of the mesh, e.g. [4℄.

1.1 Multiphase partitioning { motivation

Typi
ally the load-balan
e 
onstraint { that the 
omputational load is evenly

balan
ed { is simply satis�ed by ensuring that ea
h pro
essor has an approxi-

mately equal share of the mesh entities (e.g. the mesh elements, su
h as triangles



global convergence

solid/stress solver

global convergence

fluid/flow solver

another timestep?

y

y

n

n

y
n

fluid/flow solid/stress

processor 0 processor 1

(b)

(a)

proc 0

proc 1

(c)

Fig. 1. An example of a multiphysi
s problem

or tetrahedra, or the mesh nodes). Even in the 
ase where di�erent mesh en-

tities require di�erent 
omputational solution time (e.g. boundary nodes and

internal nodes) the balan
ing problem 
an still be addressed by weighting the


orresponding graph verti
es and distributing the graph weight equally. Unfor-

tunately, for some real appli
ations the pro
essor load 
an also depend on many

other fa
tors su
h as data a

ess patterns but sin
e these are a fun
tion of the

�nal partition, it is not possible to estimate su
h 
osts a priori and we do not

address this issue here. We therefore 
onsider only those appli
ations for whi
h

a reasonably a

urate weighting of the graph, related to 
omputational 
ost, 
an

be realised. However even for su
h appli
ations, as in
reasingly 
omplex solution

methods are developed, there is a 
lass of solvers for whi
h su
h simple models

of 
omputational 
ost break down.

Consider the example shown in Figure 1(a) with a partition for 2 pro
es-

sors indi
ated by the dotted line. This partition might normally be 
onsidered

of good quality but for the solution algorithm in Figure 1(b) it is 
ompletely

unsuitable. As Figure 1(
) shows, during the 
uid/
ow phase of the 
al
ulation,

pro
essor 1 has relatively little work to do and indeed during the solid/stress

phase pro
essor 0 has no work at all. Furthermore, pro
essor 1 is not able to

start the solid/stress 
al
ulation until the 
uid/
ow part has terminated be
ause

of the 
onvergen
e 
he
k, a global syn
hronisation point (when all the pro
essors


ommuni
ate as a group).

In fa
t it is these multiple loops over subsets of the mesh entities inter-

spersed by global 
ommuni
ations that 
hara
terise this modi�ed mesh parti-



tioning problem. If, for example, all the loops in Figure 1(b) were over all the

mesh entities (as sometimes happens in 
odes of this nature when variables are

set to zero in regions where a given phenomenon does not o

ur { e.g. 
ow in

a solid) su
h balan
ing problems would not arise. Similarly, if in Figure 1(b)

there were no global 
onvergen
e 
he
ks, so that a pro
essor 
ould 
ommen
e

on the stress solution immediately after the 
ow solution had 
onverged lo
ally,

the problem would be removed, although the 
ow & stress regions might need

to be weighted di�erently. In the simple example in Figure 1 an obvious (and

relatively good) load-balan
ing strategy, therefore, is simply to partition ea
h

region (i.e. liquid & solid) of the domain separately so that ea
h pro
essor has

an equal number of entities from ea
h region. However, in more 
omplex 
ases,

for example where the regions relating to di�erent 
omputational phases overlap,

this may fail to provide a good solution and an advan
ed strategy is required.

We refer to this modi�ed partitioning problem as the multiphase mesh par-

titioning problem (MMPP) be
ause the underlying solver has multiple distin
t


omputational subphases, ea
h of whi
h must be balan
ed separately. Typi
ally

MMPPs arise from multiphysi
s or multiphase modelling (e.g. [7℄) where dif-

ferent parts of the 
omputational domain exhibit di�erent physi
al behaviour

and/or material properties. They 
an also arise in 
onta
t-impa
t modelling,

e.g. [6℄, whi
h usually involves the solution of lo
alised stress-strain �nite el-

ement 
al
ulations over the entire mesh together with a mu
h more 
omplex


onta
t-impa
t dete
tion phase over areas of possible penetration.

1.2 Overview

In this paper we dis
uss a strategy for dealing with MMPPs, whi
h uses existing

single-phase mesh partitioning algorithms as `bla
k box' solvers, to partition the

problem phase by phase, ea
h partition based on those of the previous phases.

The details of this approa
h are des
ribed in Se
tion 2, in parti
ular the ne
-

essary vertex 
lassi�
ation s
heme (x2.1) and an outline of the implementation

(x2.2). In Se
tion 3 we present results for the te
hniques on an illustrative set

of example MMPPs. Finally, in Se
tion 4 we summarise the paper and mention

some suggestions for further resear
h.

Restri
tions on spa
e pre
lude a full dis
ussion of related work (although

some di�erent approa
hes are reviewed in [10℄). However most 
losely related to

the work presented here is the multi-
onstraint partitioning method of Karypis

& Kumar, [5℄, a di�erent and in some ways more general approa
h that 
an

be applied to the multiphase partitioning problem. Their idea is to view the

problem as a graph partitioning problem with multiple 
onstraints (in this 
ase

load-balan
ing 
onstraints). As here the verti
es of the graph have a ve
tor of

weights, in this 
ase representing the 
ontribution to ea
h balan
ing 
onstraint.

However, in 
ontrast to the methods presented here, Karypis & Kumar solve the

problem in a single 
omputation (rather than on a phase by phase basis).



2 Multiphase partitioning

In this se
tion we des
ribe a strategy whi
h addresses the multiphase partitioning

problem, the prin
iple of whi
h is to partition ea
h phase separately, but use the

results of previous phases to in
uen
e the partition of the 
urrent one. The

partitioner whi
h we use to 
arry out the partitioning of ea
h phase is outlined

in [10℄; however, in prin
iple any partition optimisation algorithm 
ould be used.

2.1 Vertex 
lassi�
ation

To talk about multiphase partitioning and more spe
i�
ally our methods for

addressing the problem we need to �rst 
lassify the graph verti
es a

ording to

phase. For 
ertain appli
ations the mesh entities (e.g. nodes or elements) will

ea
h belong to one phase only, e.g. Figure 2(a), but it is quite possible for a mesh

entity, and hen
e the graph vertex representing it, to belong to more than one

phase. For this reason, if F is the number of phases (i.e. the number of distin
t


omputational subphases separated by global syn
hronisation points { see x1.1),

we require for ea
h vertex v that the input graph in
ludes a ve
tor of length

F , 
ontaining non-negative integer weights that represent the 
ontribution of

that vertex to the 
omputational load in ea
h phase. Thus if jvj

i

represents the


ontribution of vertex v to phase i then the weight ve
tor for a vertex v is given

by w = [jvj

1

; jvj

2

; : : : ; jvj

F

℄ (this is exa
tly the same as for the multi-
onstraint

paradigm of Karypis & Kumar, [5℄). For the example in Figure 2(a) then, the

phase 1 mesh nodes would be input with the ve
tor [1; 0℄ while the phase 2 nodes

would be input with the ve
tor [0; 1℄ (assuming ea
h node 
ontributes a weight

of 1 to their respe
tive phases). We then de�ne the vertex type to be the lowest

value of i for whi
h jvj

i

> 0, i.e.

type(v) =

�

min i su
h that jvj

i

> 0 for i = 1; : : : ; F

0 if jvj

i

= 0 for i = 1; : : : ; F:

(1)

Thus in the 
ase when the mesh phases are distin
t (e.g. Figure 2) the vertex

type is simply the phase of the mesh entity that it represents; when the mesh

entities belong to more than one phase then the vertex type is the �rst phase in

whi
h its mesh entity is a
tive. Note that it is entirely possible that jvj

i

= 0 for

all i = 1; : : : ; F (although this might appear to be unlikely it did in fa
t o

ur

in the very �rst tests of the te
hnique that we tried with a real appli
ation, [10℄)

and we refer to su
h verti
es as type zero verti
es. For 
lari�
ation then, a mesh

entity 
an belong to multiple phases, but the graph vertex whi
h represents it


an only be of one type t = 0; : : : ; F , where F is the number of phases.

2.2 Multiphase partitioning strategy

To explain the multiphase partitioning strategy, 
onsider the example mesh

shown in Figure 2(a) whi
h has two phases and for whi
h we are required to

partition the mesh nodes into 4 subdomains. The basis of the strategy is to �rst



activestationaryactivestationary

phase 1 phase 2

(c) (d)

(a) (b)

Fig. 2. Multiphase partitioning of a simple two phase mesh: (a) the two phases; (b)

the partition of the type 1 verti
es; (
) the input graph for the type 2 verti
es; (d) the

same input graph with stationary verti
es 
ondensed

partition the type 1 verti
es (ea
h representing a mesh node), shown partitioned

in Figure 2(b) and then partition the type 2 verti
es. However, we do not simply

partition the type 2 verti
es independent of the type 1 partition; to enhan
e data

lo
ality it makes sense to in
lude the partitioned type 1 verti
es in the 
al
ula-

tion and use the graph shown in Figure 2(
) as input for the type 2 partitioning.

We retain the type 1 partition by requiring that the partitioner may not 
hange

the pro
essor assignment of any type 1 vertex. We thus refer to those verti
es

whi
h are not allowed to migrate (i.e. those whi
h have already been partitioned

in a previous phase) as stationary verti
es. Non-stationary verti
es whi
h belong

to the 
urrent phase are referred to as a
tive.

Vertex 
ondensation. Be
ause a large proportion of the verti
es may be

`stationary' (i.e. the partitioner is not allowed to migrate them) it is rather inef-

�
ient to in
lude all su
h verti
es in the 
al
ulation. For this reason we 
ondense

all stationary verti
es assigned to a pro
essor p down to a single stationary

super-vertex as shown in Figure 2(d). This 
an 
onsiderably redu
e the size of

the input graph.



Graph edges. Edges between stationary and a
tive verti
es are retained to

enhan
e the interphase data lo
ality, however, as 
an be seen in Figure 2(d),

edges between the 
ondensed stationary verti
es are omitted from the input

graph.There is a good reason for this; our partitioner in
ludes an integral load-

balan
ing algorithm (to remove imbalan
e arising either from an existing par-

tition of the input graph or internally as part of the multilevel pro
ess) whi
h

s
hedules load to be migrated along the edges of the subdomain graph. If the

edges between stationary verti
es are left in the input graph, then 
orresponding

edges appear in the subdomain graph and hen
e the load-balan
er may s
hedule

load to migrate between these subdomains. However, if these inter-subdomain

edges arise solely be
ause of the edges between stationary verti
es then there

may be no a
tive verti
es to realise this s
heduled migration and the balan
ing

may fail.

Implementation. Although we have illustrated the multiphase partitioning

algorithm with a two phase example, the te
hnique 
an 
learly be extended to

arbitrary numbers of phases. The multiphase mesh partitioning paradigm then


onsists of a wrapper around a `bla
k box' mesh partitioner. As the wrapper

simply 
onstru
ts a series of F subgraphs, one for ea
h phase, implementation is

straightforward, even in parallel, [10℄. Furthermore, the modi�
ations required

for the partitioner are relatively minor and essentially 
onsist of preventing sta-

tionary verti
es from migrating. Details 
an be found in [10℄.

3 Experimental results

In this se
tion we give illustrative results by testing the multiphase partitioning

strategy on a set of arti�
ial but not unrealisti
 examples of distin
t two-phase

problems. By distin
t we mean that the 
omputational phase regions do not

overlap and are separated by a relatively small interfa
e. Su
h problems are

typi
al of many multiphysi
s 
omputational me
hani
s appli
ations su
h as so-

lidi�
ation, e.g [1℄. Further results for the multiphase s
heme on other problem

types (su
h as those whi
h arise when di�erent 
al
ulations take pla
e on mesh

nodes from those taking pla
e on mesh elements, together with some examples

from a real-life 
onta
t-impa
t simulation) 
an be found in [2, 10℄.

Table 1. Distin
t phase meshes

name V

1

V

2

E des
ription

512x256 65536 65536 261376 2D regular grid


ra
k 4195 6045 30380 2D nodal mesh

dime20 114832 110011 336024 2D dual mesh

64x32x32 32768 32768 191488 3D regular grid

bra
k2 33079 29556 366559 3D nodal mesh

mesh100 51549 51532 200976 3D dual mesh



The example problems here are 
onstru
ted by taking a set of 2D & 3D

meshes, some regular grids and some with irregular (or unstru
tured) adja
en-


ies and geometri
ally bise
ting them so that one half is assigned to phase 1

and the other half to phase 2. Table 1 gives a summary of the mesh sizes and


lassi�
ation, where V

1

& V

2

represent the number of type 1 & type 2 verti
es, re-

spe
tively, and E is the number of edges. These are possibly the simplest form of

two-phase problem and provide a 
lear demonstration of the need for multiphase

mesh partitioning.

The algorithms are all implemented within the partitioning tool JOSTLE

1

and we have tested the meshes with 3 di�erent partitioning variants for 3 di�erent

values of P , the number of subdomains/pro
essors. The �rst of these partitioners

is simply JOSTLE's default multilevel partitioning s
heme, [8℄, whi
h takes no

a

ount of the di�erent phases and is referred to here as JOSTLE-S. The mul-

tiphase version, JOSTLE-M and the parallel multiphase version, PJOSTLE-M,

then in
orporate the multiphase partitioning paradigm as des
ribed here.

The results in Table 2 show for ea
h mesh and value of P the proportion of


ut edges, jE




j=jEj, (whi
h gives an indi
ation of the partition quality in terms

of 
ommuni
ation overhead) and the imbalan
e for the two phases, �

1

& �

2

respe
tively. These three quality metri
s are then averaged for ea
h partitioner

and value of P .

As suggested, JOSTLE-S, whilst a
hieving the best minimisation of 
ut-

weight, 
ompletely fails to balan
e the two phases (sin
e it takes no a

ount

of them). On average (and as one might expe
t from the 
onstru
tion of the

problem) the imbalan
e is approximately 2 { i.e. the largest subdomain is twi
e

the size that it should be and so the appli
ation might be expe
ted to run twi
e

as slowly as a well partitioned version (negle
ting any 
ommuni
ation overhead).

This is be
ause the single phase partitioner ignores the di�erent graph regions

and (approximately) partitions ea
h phase between half of the pro
essors. Both

the multiphase partitioners, however, manage to a
hieve good balan
e, although

note that all the partitioners have an imbalan
e toleran
e, set at run-time, of

1.03 { i.e. any imbalan
e below this is 
onsidered negligible. This is parti
ularly

noti
eable for the serial version, JOSTLE-M, whi
h, be
ause of its global nature

is able to utilise the imbalan
e toleran
e to a
hieve higher partition quality (see

[8℄) and thus results in imbalan
es 
lose to (but not ex
eeding) the threshold

of 1.03. The parallel partitioner, PJOSTLE-M, on the other hand, produ
es

imbalan
es mu
h 
loser to 1.0 (perfe
t balan
e).

In terms of the 
ut-weight, JOSTLE-M produ
es partitions about 28% worse

on average than JOSTLE-S and those of PJOSTLE-M are about 35% worse.

These are to be expe
ted as a result of the more 
omplex partitioning problem

and are in line with the 20-70% deterioration reported by Karypis & Kumar for

their multi-
onstraint algorithm, [5℄.

We do not show run time results here and indeed the multiphase algorithm

is not parti
ularly time-optimised but, for example, for 'mesh100' and P = 16,

the run times on a DEC Alpha workstation were 3.30 se
onds for JOSTLE-M

1

available from http://www.gre.a
.uk/jostle



Table 2. Distin
t phase results

P = 4 P = 8 P = 16

mesh jE




j=jEj �

1

�

2

jE




j=jEj �

1

�

2

jE




j=jEj �

1

�

2

JOSTLE-S: jostle single-phase

512x256 0.004 2.000 2.000 0.006 2.000 2.000 0.011 2.000 2.000


ra
k 0.015 1.906 1.614 0.026 2.434 1.692 0.041 2.445 1.709

dime20 0.001 1.881 1.726 0.003 1.986 2.036 0.004 1.972 2.049

64x32x32 0.023 2.000 2.000 0.038 2.000 2.000 0.052 2.000 2.000

bra
k2 0.008 1.932 2.096 0.023 1.937 2.138 0.037 1.949 2.145

mesh100 0.008 2.012 1.987 0.016 2.011 2.015 0.025 2.034 2.005

average 0.010 1.955 1.904 0.019 2.061 1.980 0.028 2.067 1.985

JOSTLE-M: jostle multiphase

512x256 0.004 1.025 1.026 0.009 1.028 1.019 0.013 1.028 1.026


ra
k 0.016 1.025 1.027 0.030 1.025 1.028 0.055 1.027 1.029

dime20 0.002 1.027 1.015 0.003 1.020 1.025 0.006 1.016 1.018

64x32x32 0.027 1.026 1.029 0.041 1.030 1.029 0.063 1.026 1.030

bra
k2 0.021 1.010 1.014 0.034 1.030 1.030 0.052 1.029 1.026

mesh100 0.011 1.023 1.021 0.020 1.022 1.029 0.034 1.023 1.029

average 0.013 1.023 1.022 0.023 1.026 1.027 0.037 1.025 1.026

PJOSTLE-M: parallel jostle multiphase

512x256 0.006 1.000 1.000 0.010 1.000 1.000 0.016 1.000 1.001


ra
k 0.016 1.000 1.000 0.036 1.000 1.001 0.055 1.000 1.000

dime20 0.002 1.000 1.000 0.004 1.000 1.000 0.007 1.001 1.001

64x32x32 0.029 1.000 1.000 0.046 1.000 1.002 0.066 1.002 1.013

bra
k2 0.020 1.000 1.001 0.033 1.000 1.002 0.052 1.001 1.005

mesh100 0.011 1.000 1.000 0.021 1.000 1.000 0.033 1.002 1.001

average 0.014 1.000 1.000 0.025 1.000 1.001 0.038 1.001 1.004

and 2.22 se
onds for JOSTLE-S. For the same mesh in parallel on a Cray T3E

(with slower pro
essors) the run times were 5.65 se
onds for PJOSTLE-M and

3.27 for PJOSTLE-S (the standard single-phase parallel version des
ribed in [9℄).

On average the JOSTLE-M results were about 1.5 times slower than those of

JOSTLE-S and PJOSTLE-M was about 2 times slower than PJOSTLE-S. This

is well in line with the 1.5 to 3 times performan
e degradation suggested for the

multi-
onstraint algorithm, [5℄.

4 Summary and future resear
h

We have des
ribed a new approa
h for addressing the load-balan
ing issues of CM


odes 
ontaining multiple 
omputational phases. This approa
h, the multiphase

mesh partitioning strategy, 
onsists of a graph manipulation wrapper around an

almost unmodi�ed `bla
k box' mesh partitioner whi
h is used to partition ea
h

phase individually. As su
h the strategy is relatively simple to implement and


ould, in prin
iple, reuse existing features of the partitioner, su
h as minimising

data migration in dynami
 repartitioning 
ontext.



We have tested the strategy on examples of MMPPs and demonstrated that

it 
an su

eed in produ
ing high quality, balan
ed partitions where a standard

mesh partitioner simply fails (as it takes no a

ount of the di�erent phases).

The multiphase partitioner does however take somewhat longer than the single

phase version, typi
ally 1.5-2 times as long although we do not believe that

this relationship 
an be quanti�ed in any meaningful way. We have not tested

the strategy exhaustively and a
knowledge that it is not too diÆ
ult to derive

MMPPs for whi
h it will not su

eed. In fa
t, in this respe
t it is like many

other heuristi
s (in
luding most mesh partitioners) whi
h work for a broad 
lass

of problems but for whi
h 
ounter examples to any 
on
lusions 
an often be

found.

Some examples of the multiphase mesh partitioning strategy in a
tion for


onta
t-impa
t problems 
an be found in [2℄, but with regard to future work

in this area, it would be useful to investigate its performan
e in a variety of

other genuine CM 
odes. In parti
ular, it would be useful to look at examples

for whi
h it does not work and either try and address the problems or at least


hara
terise what features it 
annot 
ope with.

Referen
es

1. C. Bailey, P. Chow, M. Cross, Y. Fryer, and K. A. Peri
leous. Multiphysi
s Mod-

elling of the Metals Casting Pro
ess. Pro
. Roy. So
. London Ser. A, 452:459{486,

1995.

2. A. Basermann, J. Fingberg, G. Lonsdale, B. Maerten, and C. Walshaw. Dynami


Multi-Partitioning for Parallel Finite Element Appli
ations. In E. H. D'Hollander

et al., editor, Parallel Computing: Fundamentals & Appli
ations, Pro
. Intl. Conf.

ParCo'99, Delft, Netherlands, pages 259{266. Imperial College Press, London,

2000.

3. M. R. Garey, D. S. Johnson, and L. Sto
kmeyer. Some simpli�ed NP-
omplete

graph problems. Theoret. Comput. S
i., 1:237{267, 1976.

4. B. Hendri
kson and R. Leland. A Multilevel Algorithm for Partitioning Graphs.

In S. Karin, editor, Pro
. Super
omputing '95, San Diego. ACM Press, New York,

NY 10036, 1995.

5. G. Karypis and V. Kumar. Multilevel Algorithms for Multi-Constraint Graph

Partitioning. TR 98-019, Dept. Comp. S
i., Univ. Minnesota, Minneapolis, MN

55455, 1998.

6. G. Lonsdale, B. Elsner, J. Clin
kemaillie, S. Vla
houtsis, F. de Bruyne, and

M. Holzner. Experien
es with Industrial Crashworthiness Simulation using the

Portable, Message-Passing PAM-CRASH Code. In High-Performan
e Computing

and Networking (Pro
. HPCN'95), volume 919 of LNCS, pages 856{862. Springer,

Berlin, 1995.

7. K. M
Manus, C. Walshaw, M. Cross, and S. P. Johnson. Unstru
tured Mesh

Computational Me
hani
s on DM Parallel Platforms. Z. Angew. Math. Me
h.,

76(S4):109{112, 1996.

8. C. Walshaw and M. Cross. Mesh Partitioning: a Multilevel Balan
ing and Re�ne-

ment Algorithm. SIAM J. S
i. Comput., 22(1):63{80, 2000. (originally published

as Univ. Greenwi
h Te
h. Rep. 98/IM/35).



9. C. Walshaw and M. Cross. Parallel Optimisation Algorithms for Multilevel Mesh

Partitioning. Parallel Comput., 26(12):1635{1660, 2000. (originally published as

Univ. Greenwi
h Te
h. Rep. 99/IM/44).

10. C. Walshaw, M. Cross, and K. M
Manus. Multiphase Mesh Partitioning. Appl.

Math. Modelling, 25(2):123{140, 2000. (originally published as Univ. Greenwi
h

Te
h. Rep. 99/IM/51).


