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We outline the philosophy behind a newmethod for solving the graph-partitioning problem
which arises in mapping unstructured mesh calculations to parallel computers. The method,
encapsulated in a software tool, JOSTLE, employs a combination of techniques including
the Greedy algorithm to give an initial partition, together with some powerful optimisation
heuristics. A clustering technique is additionally employed to speed up thewhole process. The
resulting partitioning method is designed to work efficiently in parallel as well as sequentially
and can be applied to both static anddynamically refinedmeshes. Experiments on graphs with
up to a million nodes indicate that JOSTLE is up to an order of magnitude faster than existing
state-of-the-art techniques such as Multilevel Recursive Spectral Bisection, whilst providing
partitions of equivalent quality.
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1. Introduction

The use of unstructuredmesh codes on parallel machines is one of themost efficient ways to
solve large Computational Fluid Dynamics (CFD) problems. Completely general geometries
and complex behaviour can be readily modelled and, in principle, the inherent sparsity of
many such problems can be exploited to obtain excellent parallel efficiencies. However, unlike
their structured counterparts, one must carefully address the problem of distributing themesh
across thememory of themachine at runtime so that the computational load is evenly balanced
and the amount of interprocessor communication is minimised. It is well known that this
problem is NP complete, so in recent years much attention has been focused on developing
suitable heuristics, and some powerful methods, many based on a graph corresponding to the
communication requirements of themesh, have been devised, e.g. [3]. In this paper we discuss
the mesh partitioning problem in the light of the coming generation of massively parallel
machines and the resulting implications for such algorithms.

1.1. Mesh partitioning issues
As CFD establishes itself as a reliable and invaluable tool for scientists and engineers, the

trend is to solve larger and largerproblems (for example 2Dairfoil simulationsgrow to3Dwings
and even whole aircraft). An immediate consequence is that, as mesh andmachine sizes grow
the need for parallelmesh-partitioning becomes increasingly acute, since anO(N) overhead is
simply not scalable. In addition, developing techniques such as parallel mesh-generation give
rise to meshes which are already distributed across the memory of the parallel machine. In
these cases it is extremely expensive to transfer the whole mesh back to a single processor for
sequential load-balancing, if indeed the memory of that processor allows it. Löhner et al. have



advanced some powerful arguments in support of this proposition, [8].
Another extremely important aspect ofpartitioningarises from time-dependentunstructured

mesh codes which adaptively refine the mesh. This is a very efficient way to track phenomena
which traverse the solution domain butmeans that the position and density of the mesh points
may vary dramatically over the course of an integration and hence require dynamic load-

balancing. Again this calls for a parallel partitioning algorithm and, in addition, the issues of
cost and reuse arise. Firstly, the unstructuredmesh may be modified every few time-steps and
so the load-balancing must have a low cost relative to that of the solution algorithm in between
remeshing. This may seem to restrict us to computationally cheap algorithms but fortunately
help is at hand if the mesh has not changed too much, for in this case it is a simple matter
to interpolate the existing partition from the old mesh to the new and use this as the starting
point for repartitioning, [15]. In fact, not only is the load-balancing likely to be unnecessarily
computationally expensive if it fails to use this information, but also the mesh elements will
be redistributed without any reference to their previous ‘home processor’ and heavy data
migration may result.

1.2. Overview
The strategy developed here to tackle these issues efficiently is to derive a partition as quickly

and cheaply as possible, distribute the data and then optimise the partition in parallel. Of course,
if the mesh is already distributed then the existing partition is used and optimisation can
commence immediately. Currently the method has only been implemented sequentially, but
the optimisation algorithm has been designed with parallelism in mind and here we seek to
validate the method from the point of view of partition quality.

This multi-stage approach is similar to the work of Vanderstraeten, [12], although the tech-
niques vary in that we employ deterministic heuristics to optimise the partition. The phi-
losophy behind the optimisation algorithm is close to that of Löhner et al., [8], although in
addition we employ a heuristic which attempts to improve the ‘shape’ of the subdomains. In
common with many such techniques in this field, the algorithms work with a graph based on
the communication requirements of the mesh.

In the rest of this paper we present an overview of these algorithms which, when combined
together, form a powerful and flexible technique for partitioning unstructured meshes. In
particular we outline a parallel meta-heuristic for optimising partitions, x3, and a method for
coarsening the communication graph arising from the mesh in order to substantially reduce
the workload, x4.

The software tool written at Greenwich to implement these ideas is known as JOSTLE. This
is not an acronym; rather it reflects the way the subdomains jostle one another to reach a
steady-state. It is modular in nature and consists of three parts; the initial partitioning module,
the partition optimisation module and the graph coarsening module. These modules are
designed for interchangeable use: in the sequential implementation the code can coarsen the
graph, partition the reduced graph, optimise the partition, interpolate onto the full graph and
reoptimise. With parallel code one might partition the full graph sequentially, distribute the
graph, coarsen each subdomain, optimise the partition of the reduced graph, interpolate and
reoptimise.

The initial partitioning code uses a sequential algorithm and is only employed if the input
data is stored or generated on a single processor. The optimisation code consists of three
complementary techniques grouped together to form a meta-heuristic. Collectively they take
as input a graph and partition (G;P1) and iterate to try and output a better partition (P2). The
graph reduction code takes as input a graph (G) and outputs another reduced size graph (g).



Ideally the reduced graph should be considerably smaller than the original, but still capture
the essential geometric or topological features.
Due to themodular natureof the code and the fact that the optimisation andgraph coarsening

use parallelisable algorithms, all the issues raised by adaptive refinement are addressed by our
mesh-partitioning techniques. They do not rely on the load being balanced, they can reuse an
existing partition and the methods are designed to work efficiently in parallel.

2. The initial partition

The aim of the initial partitioning code is to divide up the graph as rapidly as possible in
order that it can be distributed and the partition optimised in parallel. Whilst a block-based
partition (e.g. the firstN=P nodes to processor 1, etc.) is probably the fastest method for doing
this, intuition suggests and experience shows that it is worth a little extra effort in order to
reduce the amount of optimisation that must be carried out.
The code therefore utilises a version of the Greedy algorithm [2]. This is clearly seen to be

the fastest graph-based method as it only visits each graph edge once. The variant employed
here differs from that proposed by Farhat only in that it works solely with a graph rather than
the nodes and elements of a finite element mesh.

3. The parallel optimisation method

Once the graph is partitioned, optimisation can take place to improve the quality of the
partition. The method outlined here uses a combination of three heuristics to both achieve
load-balance and to minimise the interprocessor communication. Initially the subdomain
heuristic attempts to ‘improve’ the ‘shape’ of the subdomains. However, this heuristic cannot
guarantee load-balance and so a second heuristic is applied to share the workload equally
between all processors. Finally a localised version of the Kernighan-Lin algorithm, [7], is
applied to minimise the communication cost.
Throughout each of the three phases, it is assumed that the final partition will not deviate

too far from the initial one. Thus, in general, only border nodes are allowed to migrate to
neighbouring subdomains and the only time that internal nodes migrate is in the first phase,
x3.1, when the heuristic can detect small subsets of a subdomain which are disconnected from
the main body.

3.1. The subdomain heuristic

This new heuristic has been designed according to two constraints. We want the algorithm
to

(a) address the optimisation at a subdomain level to try and attain a global minimum;

(b) carry out the optimisation locally to give an efficient parallel algorithm.

At first these two constraints may appear to frustrate each other. However, a useful analogy
with a simple schoolroom experiment can be drawn. The experiment consists of bubbling
a gas through a pipette into a detergent solution and the result is that the bubbles make a
regular (hexagonal) pattern on the surface of the liquid. They achieve their regularity without
any global ‘knowledge’ of the shape of the container or even of any bubbles not in immediate
contact; it is simply achieved by each bubble minimising its own surface tension.
Translating this analogy to a partitioned graph we see that each subdomain must try to

minimise its own surface area. In the physical 2D or 3D world the object with the smallest



surface to volume ratio is the circle or sphere. Thus the idea behind the subdomain heuristic
is to determine the centre of each subdomain (in some graph sense) and to then measure the
radial distance from the centre to the edges and attempt to minimise this by migrating nodes
which are furthest from the centre.

Determining the ‘centre’ of the subdomain is relatively easy and can be achieved by moving
in level sets inwards from the subdomain border until all the nodes in the subdomain have
been visited. The final set defines the centre of the subdomain and, if the graph is connected
(assumed), the level sets will completely cover the subdomain, although the centre may not be
a connected set of nodes. The reverse of this process can then be used to determine the radial
distance.

Having derived these sets each node can be marked by its radial distance. Nodes which are
not connected to the centre are not marked and this is useful for migrating small disconnected
parts of the subdomain to more appropriate processors. The code decides which nodes to
migrate based on a combination of radial distance, load-imbalance and the change in cut-
edges. This decision process is fully described in [13].

3.2. Load-balancing

The load-balancing problem, i.e. how to distribute N tasks over a network of P processors
so that none havemore than dN=Pe, is a very important area for research in its own right with a
vast range of applications, [10]. Here we use a localised iterative algorithm for distributed load-
balancing devised by Song, [11]. In common with the rest of our optimisation, the localised
nature means that it only requires information from, and migrates nodes to, its neighbours
in the processor graph. The description of the algorithm assumes that the workload consists
of independent tasks of equal size and is proven to iterate to convergence with a maximum
load-difference of d=2 where d is the diameter of the processor graph.

Translating this to the mesh partitioning problem, we use Song’s algorithm to determine the
number of nodes to migrate from a given processor to each of its neighbours and then use the
change in cut-edges to determine which nodes to move. The integration of this algorithm into
the JOSTLE code is fully described in [13].

3.3. Local partition refinement
Having achieved optimal (or near optimal) load-balance it may still be possible to move

nodes around the processor network to further minimise the number of cut edges whilst
retaining the load-balance. An algorithm which comes immediately to mind for this purpose
is the Kernighan-Lin (KL) heuristic, which maintains load-balance by employing pairwise
exchanges of nodes. Unfortunately it has O(n2 log n) complexity but a linear-time variant
which delivers similar results has been proposed by Fiduccia & Mattheyses (FM), [4]. The FM
algorithm achieves this reduction partially by calculating swaps one node at a time rather than
in pairs.

The algorithm used by JOSTLE is largely inspired by the FM algorithm but with several
simplifications to enable an efficient parallel algorithm. In particular:–

� In our applications it is very unlikely that an internal node will have a higher gain than
a border node – thus we only consider transferring border nodes.

� It is also unlikely that an overall gain will accrue by transferring a node to a subdomain
to which it is not adjacent – thus nodes only transfer to neighbouring subdomains.

One immediate advantage of these modifications is that by only considering border nodes the
problem has sublinear complexity.



The algorithm is fully described in [13].

4. Clustering: reducing the problem size

For coarse granularity partitions it is inefficient to apply the optimisation techniques to every
graph node as most will be internal to the subdomains. A simple technique to speed up the
load-balancing process, therefore, is to group nodes together to form clusters, use the clusters
to define a new graph, recursively iterate this procedure until the graph size falls below some
threshold and then apply the partitioning algorithm to this reduced size graph. This is quite
a common technique and has been used by several authors in various ways – for example, in
a multilevel way analogous to multigrid techniques, [1], and in an adaptive way analogous to
dynamic refinement techniques, [15].
The technique used here for graph reduction is a variant of the Greedy algorithm, [2],

although various algorithms have been successfully employed, [1,5,6]. It is used recursively to
cluster nodes into small groups, each of which defines a node of the reduced graph. It is, of
course, important that the groups of nodes are connected (in order to retain the features of the
original graph) and so we relax the condition that each cluster should contain the same node
weight in favour of guaranteeing that the nodes of each cluster form a connected set. The node
and edge weights for the reduced graph derive simply from the sum of node weights over the
cluster and sum of edge weights from the cluster to other clusters.

5. Experimental results

5.1. Metrics
We use two metrics to measure the performance of the algorithms, the total weight of cut

edges, jE
c

j and t(s), the execution time in seconds of each algorithm. Unfortunately, there are
no ideal metrics for assessing partition quality as the parallel efficiency of the problem from
which the mesh arises will depend on many things – typically the machine (size, architecture,
latency, bandwidth and flop rate), the solution algorithm (explicit, implicit with direct linear
solution, implicit with iterative linear solution) and the problem itself (size, no. of iterations)
all play a part.
We have compared themethodwith two of themost popular partitioning algorithms, Greedy

and Multilevel Recursive Spectral Bisection (MRSB). The Greedy algorithm, [2], is actually
performed as part of the jostle code and is fast but not particularly good at minimising cut
edges. MRSB, on the other hand, is a highly sophisticated method, good at minimising jE

c

j

but suffering from relatively high runtimes, [1].

5.2. The results
The following experiments were mostly carried out on a Silicon Graphics Indigo 2 with a

150 MHz CPU and 64 Mbytes of memory. The final set of results for the largest mesh came
from a Sun SPARC station with a 50 MHz CPU and 224 Mbytes of memory; typically this
processor is about one and a half times slower than the Silicon Graphics machine but the
memory requirements forced its usage. The code has also been compiled and run on an IBM
RS6000 with similar timing ratios. A more detailed analysis of selected results can be found in
[14] and further results dealing with the optimisation technique found in [13].
We include results for runs on 5 different graphs. The first two, the Hammondmesh and the

Barth5 mesh are available by anonymous ftp (from riacs.edu/pub/grids) and have been
previously been used for benchmarking partitioning algorithms, [1,5]. The Hammond mesh
is a small (N = 4; 720, E = 13; 722) two-dimensional finite-element mesh around a 3-element



airfoil and Barth5 is a similar but larger (N = 15; 606, E = 45; 878) mesh around a 4-element
airfoil. The other meshes are homegrown: Tri60K is a two-dimensional finite-volume mesh
(N = 60; 005,E = 89; 440) arising from a casting simulation, [9]. Tet100K and Tet1M are three-
dimensional finite-volumemeshes (N = 103; 081,E = 200; 976;N = 1; 119; 663,E = 2; 212; 012
respectively) in the shape of a Y standing on a baseplate.

For eachmesh the jostle code has been run using the graph coarsening, x4, to create a reduced
graph. A partition is generated and optimised on this reduced graph, interpolated onto the
full graph and then reoptimised. For the Tet1M results the subdomain heuristic was not used
on the full graph. The MRSB code was made available to us by one of its authors, Horst Simon,
and run unchanged with a contraction threshold of 100.

It can be seen from the experiments that for almost all cases the jE

c

j results for JOSTLE
are consistently better than those for MRSB. In addition, the execution times for JOSTLE are
between 2.5 and 7 times faster. As would be expected, the execution times for the GREEDY
algorithm are the fastest, but the jE

c

j results are much worse.
For any of these algorithms it is virtually impossible to derive a meaningful complexity

function (although the GREEDY algorithm is approximately O(E)). In particular for JOSTLE
and MRSB the clustering process obscures the problem size. It is interesting to note, however,
that the execution times for MRSB grow much more rapidly with P than do those for JOSTLE.
This suggests that for even larger machines JOSTLE should perform even faster relative to
MRSB.

In the final set of results, table 5, we offer an example of how fast the code can be on a
workstation for a huge mesh.

6. Conclusion

Thework described above has outlined a newmethod for partitioning graphs with a specific
focus on its application to the mapping of unstructured meshes onto massively parallel com-
puters. In this context the graph-partitioning task can be very efficiently addressed through
a two-stage procedure – one to yield a legal initial partition and the second to improve its
quality with respect to interprocessor communication and load-balance. Themethod is further
enhanced through the use of a clustering technique. The resulting software tool, JOSTLE,
has been designed for implementation in parallel and for both static and dynamically refined
meshes. For the experiments reported in this paper on static meshes of up to one million
nodes, the JOSTLE procedures are an order of magnitude faster than existing techniques, such
as Multilevel Recursive Spectral Bisection, with equivalent quality.
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Table 1
Results for the Hammond mesh: N = 4; 720, E = 13; 722

GREEDY JOSTLE MRSB
P jE

c

j t(s) jE

c

j t(s) jE

c

j t(s)

16 1061 0.05 669 0.66 696 2.36
32 1456 0.05 1078 0.66 1155 2.68
64 2102 0.05 1706 0.74 1784 3.21
128 3017 0.06 2571 1.32 2678 4.21
256 4270 0.06 3691 1.65 3895 5.12

Table 2
Results for the Barth5 mesh: N = 15; 606, E = 45; 878

GREEDY JOSTLE MRSB
P jE

c

j t(s) jE

c

j t(s) jE

c

j t(s)

16 2033 0.26 1142 2.04 1282 8.60
32 2947 0.29 1850 2.16 1973 9.97
64 4046 0.29 2949 2.76 3122 11.45
128 5678 0.31 4622 3.25 4785 13.64
256 8121 0.30 6699 5.79 7109 15.86

Table 3
Results for Tri60K mesh: N = 60; 005,E = 89; 440

GREEDY JOSTLE MRSB
P jE

c

j t(s) jE

c

j t(s) jE

c

j t(s)

16 1546 0.87 1048 4.45 953 23.33
32 2595 0.93 1665 4.68 1564 29.23
64 3834 1.00 2432 6.83 2435 35.22
128 5822 1.79 3684 7.01 3712 41.43
256 8107 2.35 5423 10.32 5424 50.88

Table 4
Results for Tet100K mesh: N = 103; 081,E = 200; 976

GREEDY JOSTLE MRSB
P jE

c

j t(s) jE

c

j t(s) jE

c

j t(s)

16 10939 3.04 6212 14.70 6213 38.11
32 15549 3.17 9038 15.72 9459 61.17
64 20017 1.87 12426 16.56 13035 107.16
128 26274 2.07 15784 23.78 17751 148.30
256 33556 2.14 22250 24.51 22745 172.47

Table 5
Results for Tet1Mmesh: N = 1; 119; 663,E = 2; 212; 012

P jE

c

j t(s)

10 49549 133.37
20 64088 133.67
50 87060 132.32
100 116966 148.85
200 129963 167.92


