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Abstract

A new method is described for optimising graph partitions which arise in mapping unstructured mesh
calculations to parallel computers. The method employs a combination of iterative techniques to both
evenly balance the workload and minimise the number and volume of interprocessor communications. It
is designed to work efficiently in parallel as well as sequentially and can be applied directly to dynamically
refined meshes. In addition, when combined with a fast direct partitioning technique (such as the Greedy
algorithm) to give an initial partition, the resulting two-stage process proves itself to be both a powerful and
flexible solution to the static graph-partitioning problem. A clustering technique can also be employed to
speed up the whole process. Experiments, on graphs with up to a million nodes, indicate that the resulting
code is up to an order of magnitude faster than existing state-of-the-art techniques such as Multilevel
Recursive Spectral Bisection, whilst providing partitions of equivalent quality.
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1 Introduction

The use of unstructured mesh codes on parallel machines is one of the most efficient ways to solve large
Computational Fluid Dynamics (CFD) and Computational Mechanics (CM) problems. Completely general
geometries and complex behaviour can be readily modelled and, in principle, the inherent sparsity of many
such problems can be exploited to obtain excellent parallel efficiencies. However, unlike their structured
counterparts, one must carefully address the problem of distributing the mesh across the memory of the
machine at runtime so that the computational load is evenly balanced and the amount of interprocessor
communication is minimised. It is well known that this problem is NP complete, [8], so in recent years
much attention has been focused on developing suitable heuristics, and some powerful methods, many
based on a graph corresponding to the communication requirements of the mesh, have been devised, e.g.
[5]. Closely related to this graph partitioning problem is the problem of optimising existing mesh partitions
and in this paper we discuss the partition optimisation problem and its bearing on the graph partitioning
problem.

1.1 Dynamic partitioning

An extremely important area for partition optimisation arises from time-dependent unstructured mesh
codes which adaptively refine the mesh. This is a very efficient way to track phenomena which traverse the
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solution domain but means that the position and density of the mesh points may vary dramatically over
the course of an integration.

From the point of view of partitioning this has three major influences on possible solution techniques; cost,
reuse and parallelism. Firstly, the unstructured mesh may be modified every few time-steps and so the
load-balancing must have a low cost relative to that of the solution algorithm in between remeshing. This
may seem to restrict us to computationally cheap algorithms but fortunately help is at hand if the mesh
has not changed too much, for in this case it is a simple matter to interpolate the existing partition from
the old mesh to the new and use this as the starting point for repartitioning, [24]. In fact, not only is the
load-balancing likely to be unnecessarily computationally expensive if it fails to use this information, but
also the mesh elements will be redistributed without any reference to their previous ‘home processor” and
heavy data migration may result. The third factor to take into account is that the data is distributed and
so should be repartitioned in situ rather than incurring the expense of transferring it back to some host
processor for load-balancing and Lohner et al. have advanced some powerful arguments in support of this
proposition, [14]. Collectively these issues call for a parallel partition optimisation algorithm.

1.2 Static Partitioning

The development of successful partition optimisation algorithms also has an important side effect on the
static partitioning problem. Previously, authors have concentrated on direct methods, [1, 4]; however, the
combination of a cheap direct algorithm together with a powerful optimisation technique can often derive
partitions faster and better than those given by more sophisticated direct methods, [5, 20, 21]. Also this
sort of two-stage process can be made far more flexible by varying the amount of optimisation carried out
dependent on the problem parameters.

In addition, as mesh and machine sizes grow the need for parallel mesh partitioning becomes increasingly
acute. For small meshes and machines, an O(N) overhead for the mesh partitioning may be considered
reasonable. However, for large NV, this order of overhead will rapidly become unacceptable if the solver is
running at O(N/P). Clearly, to carry out partitioning in parallel, the data must first be distributed across
the machines memory and so deriving a partition as quickly as possible, distributing the data and then
optimising the partition in parallel is a natural strategy.

This multi-stage approach is similar to the work of Vanderstraeten, [20], although the techniques vary in
that we employ deterministic heuristics to optimise the partition. The philosophy behind the optimisation
algorithm is close to that of Lohner et al., [14], although in addition we employ a heuristic which attempts
to improve the ‘shape’ of the subdomains.

2 Notation and Definitions

We use a graph to represent the data dependencies in the mesh arising from the discretisation of the domain.
Thus, let G = G(N, E) be an undirected graph of N nodes & E edges and P be a set of processors. In a
slight abuse of notation we use N, £ & P to represent both the sets of nodes, edges & processors and the
number of nodes, edges & processors, with the meaning clear from the context. We assume that both nodes
and edges are weighted (with positive integer values) and that |n| denotes the weight of a node n; |(n, m)|
the weight of an edge; |S| := }_, ¢ In| the weight of a subset S C N; and [T'| := 3, ,)er [(n, m)] the
weight of a subsetT' C . We define P : N — P to be a partition of N and denote the resulting subdomains
by S,, for p € P. The optimal subdomain weight is given by W := [|N|/P]. We denote the set of cut (or
inter-subdomain) edges by £. and the border of each subdomain, B,, is defined as the set of nodes in 5,
which have an edge in F..

We shall use the notation < to mean ‘is adjacent to’. For example, forn,m € N,n — mif3(n,m) € E. Also
ifne€Nand S,T C N,n < Sif3(n,m) € Ewithm € S and similarly S < T if 3(n, m) € E withn € S &



Notation Name Definition

|| weight function

[ ceiling function [z] := smallest integer > x
— adjacency operator n—m<3I(n,m)eE

['(S) neighbourhood function {meN-S:m< S}

P : N — P | partition function

E, cut edges {(n,m) € E:P(n)#P(m)}
Sp subdomain p {ne N :P(n) =p}

B, border of subdomain p {neS,:In,m)eE.}

H, halo of subdomain p [(Sp))={meN-5,:m<S5,}
W optimal subdomain weight | [|N|/P]

Table 1: Definitions

m € T. We then denote the neighbourhood of a set of nodes S (the nodes adjacent to S) by I'(S) and thus
the halo of subdomain S, by H, := I'(S,). Table 1 gives a summary of these definitions.

We assume throughout the rest of this paper that the graph is connected (i.e. for all n,m € N there exists
a path of edges from n to m). If this is not the case there are several possible options, such as running the
partitioning code on each connected subgraph or even adding edges of zero weight to the graph to make it
connected.

2.1 The graph-partitioning problem

The definition of the graph-partitioning problem is to find a partition which evenly balances the load or
node weight on each processor whilst minimising the communications cost. More precisely we seek P
such that S, < W for p € P and such that |E,| is approximately minimised. The definition of the partition
optimisation problem is the same but working from an initial partition Py. It is a matter of contention
whether |E.| is the most important metric for minimisation but see §5.1 for a further discussion on this
topic.

Note that in general, for graphs arising from finite element or finite volume discretisations, the degree of
each node is low. As a result the surface of solutions of the mesh-partitioning problem tends to have many
local minima and can have several optimal solutions which are far apart.

2.2 Localisation and the processor graph

An important aim for any parallel algorithm is to keep communication as localised as possible to avoid
contention and expensive global operations; this issue becomes increasingly important as machine sizes
grow. Throughout the optimisation algorithm we localise the communication with respect to the partition
P by only requiring subdomains to communicate with neighbouring subdomains. Thus a processor p will
only need to communicate to ¢ if there is an edge (n, m) € E. with P(n) = p and P(m) = q.

In this way the partition P induces a processor graph on G which we shall refer toas P(G) = P(G)(P, (), an
undirected graph of P processors (nodes) and C' connections (edges). There is anedge (p,¢) € C'if S, — S,.
In addition, the weight on each processing node p € P is given by |p| = |S;| and the weight of a connection
is given by [(p, )| = 3 ((nmye mes, mes,y | m)l- Thus [P = Y, cp IS, = [N and |C] = |E.|. Figure 1
gives an example of a partitioned graph (with unit node and edge weights) and the resulting processor
graph (with node and edge weights as shown).

Note that this processor graph may bear no direct relationship to the physical processor topology of the
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Figure 1: An example graph and the resulting processor graph (node & edge weights as shown)

parallel machine, although the algorithm should be more efficient if this is the case. For the purposes of
this paper, however, we shall assume that the processors are uniformly connected — that is, point-to-point
communication carries a uniform latency no matter which processors are communicating. This is a realistic
assumption for certain machines with small or moderate numbers of processors but for other situations it
may be possible to optimise the partition for the machine topology, [23].

3 The parallel optimisation method

In this section we present three complementary iterative algorithms which combined together form a
powerful and flexible technique for optimising unstructured mesh partitions. Initially the subdomain
heuristic attempts to ‘improve’ the ‘shape’ of the subdomains. However, this heuristic cannot guarantee
load-balance and so a second heuristic is applied to share the workload equally between all processors.
Finally a localised version of the Kernighan-Lin algorithm, [12], is applied to minimise the communication
cost.

3.1 Migration and the gain and preference functions

Throughout each of the three phases, it is assumed that the final partition will not deviate too far from the
initial one. Thus, in general, only border nodes are allowed to migrate to neighbouring subdomains.

For these purposes, at each iteration we calculate the gain and preference values for every border node.
Loosely, the gain g(n, ¢) of anode n € B, can be calculated for each adjacent subdomain, S,, and expresses
some ‘estimate’ of how much the partition would be ‘improved” were n to migrate to S,. The preference
f(n) is then just the adjacent subdomain which maximises the gain of a node —ie. f(n) = ¢ where ¢
attains max,¢p g(n, 7). Most nodes in B, will only be adjacent to one subdomain, ¢ say, and in this case the
preference is simply q. Where 3 or more subdomains meet, the preferences need to be explicitly calculated
and if more than one subdomain attains the maximum gain, a pseudo-random choice is made, §3.4.

Note that the definition of the gain differs for each phase of the algorithm. For example, when applying
load-balancing and local refinement, §3.3 & §3.4, the gain g(n, ¢) just expresses the reduction in the cut-edge
weight. Thus in Figure 1 (assuming unit edge weights) there would be one less edge cut if node » migrated
to subdomain p and so g(n, p) = 1. Similarly g(n, ¢) = 0 and hence f(n) = p. For node m, g(m, p) = —1 and
g(m,r) = —1 and so a pseudo-random choice must be made for f(m). Note that here we do not allow the
preference of a node to be its current processor since we may have to migrate nodes even if the net gain is
negative.

The only time that internal nodes migrate is in the first phase, §3.2, when the heuristic can detect small
subsets of the subdomain which are disconnected from the main body. In this case the gain of internal and



border nodes in the disconnected subset is just some arbitrarily large number; the preference is the nearest
adjacent subdomain (in a graph sense).

3.2 The subdomain heuristic
3.2.1 Motivation

One of the problems of partition optimisation is that of local minima traps. Algorithms such as the
Kernighan-Lin heuristic, [12], which can be very successful at minimising the number of cut edges at a local
level, do not fully address the global problem.

A partial solution to this problem has been the introduction of non-deterministic heuristics such as simulated
annealing, e.g. [13, 25]. They address local minima traps by allowing transfers of graph nodes between
subdomains even if the communication cost is increased, the transfer being accepted according to some
probability based on a cooling schedule. These algorithms can be very effective, especially if the initial
partition is good but they can suffer from high run times.

The new heuristic introduced here has been designed according to two constraints. We want the algorithm
to:

(a) address the optimisation at a subdomain level to try and attain a global minimum;

(b) carry out the optimisation locally to give an efficient parallel algorithm.

At first these two constraints may appear to frustrate each other. However, a useful analogy with a simple
schoolroom experiment can be drawn. The experiment consists of bubbling a gas through a pipette into a
detergent solution and the result is that the bubbles make a regular (hexagonal) pattern on the surface of the
liquid. They achieve their regularity without any global ‘knowledge’ of the shape of the container or even
of any bubbles not in immediate contact; it is simply achieved by each bubble minimising its own surface
energy.

Translating this analogy to a partitioned graph we see that each subdomain must try to minimise its own
surface area. In the physical 2D or 3D world the object with the smallest surface to volume ratio is the circle
or sphere. Thus the idea behind the domain-level heuristic is to determine the centre of each subdomain
(in some graph sense) and to then measure the radial distance from the centre to the edges and attempt to
minimise this by migrating nodes which are furthest from the centre.

3.2.2 Implementation

Determining the ‘centre” of the subdomain is relatively easy and can be achieved by moving in level sets
inwards from the subdomain border until all the nodes in the subdomain have been visited. More precisely,
for each subdomain S,, define a series of (disjoint) level sets, Lo = Bp,; L1 = I'(Lo) () Sp; - .- Li = T'(Li—1);
etc. ...The final non-empty set, L., of this series defines the centre of the subdomain. Note that if the graph
is connected (assumed) the level sets will completely cover the subdomain, i.e. S, = |J; L, but that the
centre may not be a connected set of nodes.

The reverse of this process can then be used to determine the radial distance of nodes from the centre. Thus
My = Lo My =T(Mo)()Sp; ... My = T'(M;_1)[)Sp; etc. .. .Itis easy to see (for example, Figure 2) that the
mapping to level sets is not necessarily the same as that given by the inwards search for the centre. Also, if
Sp is not connected, then the level sets may not cover the subdomain, i.e. |J M; # Sp.

Having derived these sets each node n can be marked by its radial distance, ¢ — ¢ for n € M;. Nodes in
Sp which are not connected to L. are not marked. This is useful for migrating small disconnected parts of



Figure 2: An example of the level sets moving in from the boundary, L0, L1 & L2, and moving out from the
centre, MO, M1, M2 & M3

the subdomain to more appropriate processors, although it should be noted that the centre is essentially
determined by the diameter of each connected subset and not its size. Thus it is possible that a subset of the
subdomain may contain more than half the weight of the subdomain but still be unmarked. Figure 2 shows
a simple example of these level sets for a disconnected subdomain.

Whilst it is fairly easy to determined the radial distance for each node, the gain function must be derived
empirically. Although we use separate load-balancing and local refinement heuristics, §3.3 & §3.4, it is
inefficient to achieve some sort of steady-state with the subdomain heuristic only to destroy it later. For this
reason we encode imbalance and communication minimisation information in the gain at this stage. We
first define an imbalance adjustment for every domain by

8y = 20 151 IV
| By ||

and add it to the radial distance to give an adjusted radial distance, ¢(n) = ¢ — i+ 6, forn € M; C S,. This

imbalance adjustment has been arrived at by experimentation and loosely expresses the amount of weight

a subdomain can hope to gain or lose according to the size of its border and the average connectivity of the

graph. We then define the gain on a node n € B, by

gnp)=o(n)+ Y d(m)+0|(n,m)

meS,NI'(n)

g = Y e(m)+0l(n,m)  p#aq.

meS,nI'(n)

Again the preference f(n) is just the adjacent subdomain which maximises the gain of a node and for the
subdomain heuristic we migrate all nodes with positive gain.

Here 0 expresses the relative influence between the radial distance, which is used to ‘improve’” domain
shape, and the edge weight, which is used to minimise |E.|. We have found a very successful policy is
to gradually increment ¢ throughout the run. This has a dual effect, strongly reminiscent of the cooling
schedule in simulated annealing, [13], which both slows down the migration towards a steady-state and
which transfers the emphasis from global to local optima. For the experiments described in §5.3 we started
each run with § = 1 and incremented it by 1 after every 4 iterations (except after using graph coarsening
and having interpolated to the full graph — configuration ‘JOSTLE/reduction” — when we incremented ¢ by
1 every iteration).



3.3 Load-balancing

The load-balancing problem, i.e. how to distribute N tasks over a network of P processors so that none have
more than [N/P], is a very important area for research in its own right with a vast range of applications.
The topic is comprehensively introduced in [17] and some common strategies described. In particular,
much work has been carried out on parallel or distributed algorithms recently, e.g. [3], and an important
feature of the problem is whether the information on the current load-state is gathered globally or locally —
the former enables an algorithm to converge faster but may carry a high communication overhead.

Here we use a localised iterative algorithm for distributed load-balancing devised by Song, [18]. It builds on
a proposition proved by Bertsekas and Tsitsiklis, [2, pp 521], which states that a transfer policy, devised under
certain easily satisfied conditions, will converge as ¢ — co. In common with the rest of our optimisation,
the localised nature means that it only requires information from, and migrates nodes to, its neighbours in
the processor graph. The description of the algorithm assumes that the workload consists of independent
tasks of equal size and is proven to iterate to convergence with a maximum load-difference of d/2 where d
is the diameter of the processor graph.

Translating this to the mesh partitioning problem, we use Song’s algorithm to determine the number of nodes
to migrate from a given processor to each of its neighbours and then use the gain and preference functions,
§3.1, to determine which nodes to move. Although the algorithm does not guarantee perfect load-balance,
consider for example the Tri60K mesh in §5.3 of 60,005 nodes on 64 processors. The maximum diameter
possible (which arises if the processor graph is a 1D linear array or chain) is 63. The optimal load is 938 and
so the worst case deviation from this figure is 8/938 = 0.85%. Of course the finer the granularity the more
exaggerated this effect can be, but experience suggests the imbalance is usually far from the worst possible
and usually insignificant.

Conceptually this algorithm is ideally suited to our application; all information about the load-state is
gathered locally and all transfers are between neighbouring processors. Unfortunately, however, it can
suffer from very slow convergence, typically O(P) and in particular the rate of convergence is directly
proportional to the load-imbalance. For example, in one randomly generated processor graph of 233 nodes
the algorithm took 100 iterations to go from 106.1% to 4.0% load-imbalance and then a further 200 iterations
to converge while reducing the load-imbalance to 2.1%. We consider this to be too high an overhead,
particularly as most of the final iterations only involved transfers of one or two nodes at a time.

Fortunately this effect can be easily countered by running the algorithm to completion based on the current
load-state but without actually carrying out the transfers. The accumulated results can then be aggregated
and used as a migration schedule. The only qualification is that if the processor graph loses a connection
scheduled for migrating nodes, the algorithm must be rerun and the schedule revised.

Currently we use this technique for sequential partitioning and we also propose to use it in the parallel
implementation, although we are investigating other alternatives such as diffusion type schemes, e.g. [3].
The problem of calculating the migration-schedule in parallel can be solved by broadcasting the processor
graph around the network and replicating the calculation on every processor. This is not ideal because of
the global communication involved, but each processor need only broadcast its current load plus a sparse
vector listing its neighbours (or half of its neighbours since the connections are symmetric).

The gain and preference functions for load-balancing are as described in §3.1. The border nodes are sorted by
gain and the load specified by the schedule migrated to preferred subdomains. Of course a subdomain may
not have enough nodes along its boundary to satisfy the amount of migration chosen by the load-balancing
algorithm, but this will not break the conditions of the proposition provided at least one node is transferred
to the most lightly loaded neighbour at each iteration. Also the fact that, due to node migration, the processor
graph may change from iteration to iteration does not seem to significantly affect the convergence.



3.4 Local partition refinement

Having achieved optimal (or near optimal) load-balance it may still be possible to move nodes around
the processor network to further minimise the number of cut edges whilst retaining the load-balance. An
algorithm which comes immediately to mind for this purpose is the Kernighan-Lin (KL) heuristic, which
maintains load-balance by employing pairwise exchanges of nodes. Unfortunately it has O(n?logn) com-
plexity but a linear-time variant which delivers similar results has been proposed by Fiduccia & Mattheyses
(FM), [6]. The FM algorithm achieves this reduction partially by calculating swaps one node at a time rather
than in pairs. Both algorithms have the possibility of escaping local minima traps by continuing to compute
swaps even if the swap gain is negative in the hope that some later total gain may be positive. Here we
introduce an algorithm largely inspired by the KL/FM algorithms but with several modifications to better
suit our purposes.

3.4.1 Motivation

In common with Hendrickson & Leland, [9], we remark that the gains of each node do not have to be
recalculated at each pass of the algorithm —having calculated them initially, we need only recalculate gains
for migrating nodes and their immediate neighbours. However we extend the simplification by noting that,
since edge weights are always positive integers, any node internal to a subdomain (i.e. € S, — B,) will have
negative gain. Although itis easy to devise arbitrary graphs in which an internal node may have maximum
gain it seems to very occur very rarely for our sort of applications (for example, for a cell-centred finite
volume triangular discretisation with unit edge weights the maximum gain for an internal node is 1 as is the
minimum gain for a border node). Thus we need only calculate initial gains for border nodes and thereafter
for nodes coming in to the border or potential border. Of course, the full algorithm continues to evaluate
swaps even when the step gain is negative and if it explores the entire graph in this way it must eventually
calculate the gain of every node. However, if as suggested by several authors, [7, 9], we terminate this
process at some early stage, it is very likely that much of the graph will remain unexplored. This can make
the whole algorithm cost sublinear and potentially insignificant for very coarse granularities.

A second simplification arises in extending the algorithm to arbitrary P. Previously authors, [9, 19], have
implemented this by employing pairwise exchanges (e.g. for 4 processors, 1 pairs with 2 & 3 pairs with 4;
then 1 with 3 & 2 with 4 and finally 1 with 4 & 2 with 3). However we note that it is unlikely that an overall
gain will accrue by transferring a node to a subdomain which it is not adjacent to in the processor graph.
Thus we only consider exchanges between neighbouring subdomains.

For either algorithm, the swapping of nodes between two sub-domains is an inherently non-parallel oper-
ation and hence there are some difficulties in arriving at efficient parallel versions, [16]. In a naive parallel
implementation one could imagine a pair of processors alternately sending each other one node at a time
— effective but horrendously inefficient. A second difficulty arises from the fact that the algorithms treat
bisections and so processors must exchange in pairs. If, however, a processor is only going to exchange
nodes with its neighbours, it might seem that we have to derive a schedule based on the processor graph —
potentially an expensive operation. In fact, we overcome both of these problems by replicating the transfer
decision process on both sides of each sub-domain interface. Thus a processor p examines both its border
and halo nodes to decide not only which of its nodes should migrate to neighbour ¢, but also which nodes
should transfer from ¢ to p. It does not use the information about transfers of nodes that it does not own,
but the duplication of this transfer scheme allows any pair of processors to arrive independently at the same
optimisation. Although this may be computationally inefficient (because the workload is doubled) it is
almost certainly much more efficient than a ‘hand-shaking’” communication for each pair of nodes. It also
avoids the need for pairwise exchanges between neighbouring processors.



3.4.2 Implementation

Ateach iteration a processor, p, calculates the preference and gain of its own border nodes (see 3.1) and a halo
update is carried out to flush these values around the network. Next the processor examines the interfaces
with its neighbours and for each p-g interface creates a list of border nodes n which have preference f(n) = ¢
and a list of halo nodes m which have preference f(m) = p. It then chooses a starting list — either that
containing the node with the highest gain or, if both are equal, the longest list or failing that a random choice.
Alternating between the lists, each list is sorted and the node with highest gain is marked for migration. It
is then removed from the list and its neighbours in either list have their gains adjusted as if it had migrated.
The process continues while the sum of the gains of the two nodes selected that step is > 0 (note that zero
gain swaps can lead to cyclic behaviour) and the last two nodes selected are re-marked as not migrating.
Having carried out this selection process for all of its neighbours, a processor migrates all of its border nodes
that have been selected, receives migrating nodes from other processors and re-evaluates its border.

There are some important points to be noted about this method. Firstly, whenever a processor makes a
decision about sorting (or randomly selecting the starting list) it is essential that its neighbour makes the
same choice; otherwise they might reach different migration schemes and increase the cut-edge weight.
Thus when sorting, if two nodes have the same gain, they are sorted on some other factor (and for this
reason it is of no benefit to use the bucket sort of Fiduccia and Mattheyses). One possibility is the global
index of each, to which each processor presumably has access. However this might highlight some feature
of the mesh, so as an alternative, for each node, we seed a random number generator with its index and then
generate a pseudo-random index. For a similar reason, when adjusting the gain of nodes in B, on the p-¢
interface, we do not adjust those nodes which have a different preference r as this could have a knock-on
effect on the migration scheme for p which would not be seen by processors ¢ and r.

For adjusting the gain of nodes in the halo [, note that processor p needs to know about edges between
nodes within the halo, something which is not necessary for phases 1 & 2 of the optimisation. In fact one
solution is to augment the halo to a double layer of nodes around the the sub-domain and in this case each
processor can calculate all the gains and preferences of its halo nodes without any need for a halo update.
We shall study the relative costs and efficiency of either case when we implement the algorithm in parallel.

4 Experimental results

4.1 The code testbed

The software tool written at Greenwich to implement the new optimisation technique is known as JOSTLE.
This is not an acronym; rather it reflects the way the subdomains jostle one another to reach a steady-
state. It is modular in nature and consists of three parts; the initial partitioning module, the partition
optimisation module and the graph coarsening module. These modules are designed for interchangeable
use. Currently the code runs sequentially and in this case one might coarsen the graph, partition the reduced
graph, optimise the partition, interpolate onto the full graph and reoptimise. With parallel code one might
partition the full graph sequentially, distribute the graph, coarsen each subdomain, optimise the partition
of the reduced graph, interpolate and reoptimise.

4.1.1 The initial partition

The aim of the initial partitioning code is to divide up the graph as rapidly as possible in order that it can
be distributed and the partition optimised in parallel and the code therefore utilises a version of the Greedy
algorithm [4]. This is clearly seen to be the fastest graph-based method as it only visits each graph edge once.
The variant employed here differs from that proposed by Farhat only in that it works solely with a graph
rather than the nodes and elements of a finite element mesh.



4.1.2 Clustering: reducing the problem size

For coarse granularity partitions it is inefficient to apply the optimisation techniques to every graph node
as most will be internal to the subdomains. A simple technique to speed up the load-balancing process,
therefore, is to group nodes together to form clusters, use the clusters to define a new graph, recursively
iterate this procedure until the graph size falls below some threshold and then apply the partitioning
algorithm to this reduced size graph. This is quite a common technique and has been used by several
authors in various ways — for example, in a multilevel way analogous to multigrid techniques, [1], and in
an adaptive way analogous to dynamic refinement techniques, [24].

The technique used here for graph reduction is another variant of the Greedy algorithm [4], although various
algorithms have been successfully employed, [1, 9, 11]. It is used recursively to cluster nodes into small
groups, each of which defines a node of the reduced graph. It is, of course, important that the groups of
nodes are connected (in order to retain the features of the original graph) and so we relax the condition that
each cluster should contain the same node weight in favour of guaranteeing that the nodes of each cluster
form a connected set. The node and edge weights for the reduced graph derive simply from the sum of
node weights over the cluster and sum of edge weights from the cluster to other clusters. The algorithm
(which can be easily parallelised) is described more fully in [21]

5 The experiments

The following experiments were mostly carried out on a Silicon Graphics Indigo 2 with a 150 MHz CPU
and 64 Mbytes of memory. The final set of results for the largest mesh came from a Sun SPARC station with
a 50 MHz CPU and 224 Mbytes of memory; typically this processor is about 50% slower than the Silicon
Graphics machine but the memory requirements forced its usage. The code has also been compiled and run
on an IBM RS6000 with similar timing ratios. Further results can be found in [21, 22].

We include results for runs on 4 different graphs. The Barth5 mesh (which is available by anonymous ftp
from riacs.edu/pub/grids and has previously been used for benchmarking partitioning algorithms,
[1,9]) is a moderate sized (N = 15,606, 2 = 45, 878) finite-element mesh around a 4- element airfoil. Tri60K
is a two-dimensional finite-volume mesh (N = 60,005, £ = 89, 440) arising from a casting simulation,
[15]. Tetl00K and TetlM are large three-dimensional finite-volume meshes (N = 103,081, £ = 200, 976;
N =1,119,663, £ = 2,212,012 respectively) in the shape of a Y standing on a baseplate.

5.1 Metrics

We use four metrics to measure the performance of the algorithms. Three of these are concerned with the
partition quality — the total weight of cut edges, | E.|, the maximum percentage load-imbalance, ¢ (defined
below), and the average processor degree, D, := {>_ _, deg(p)}/P. The fourth is ¢(s) the execution time
in seconds of each algorithm.

peEP

Unfortunately, there are no ideal metrics for assessing partition quality as the parallel efficiency of the problem
from which the mesh arises will depend on many things — typically the machine (size, architecture, latency,
bandwidth and flop rate), the solution algorithm (explicit, implicit with direct linear solution, implicit with
iterative linear solution) and the problem itself (size, no. of iterations) all play a part. However, |E.| gives
a rough indication of the volume of communication traffic and the average degree of the processor graph,
D,, gives an indication of the number of messages each processor must send. From a load-balancing point
of view the worst percentage imbalance is derived from é := 100 x (maxpep |Sp| — W)/W %, since the speed
of the calculation is determined by the processor with the largest workload, not by underloaded processors.
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5.2 Example runs

Phase | iterations | |E.| | t(s) | 6% | Da
initial partition - (3834 | 076 | 0.00 | 5.88
energy minimisation 41 | 2384 | 12.32 | 6.08 | 4.81
load balancing 26 | 2927 | 048 | 0.64 | 4.81
local refinement 4| 2556 | 010 | 0.64 | 4.84

Table 2: Results for the Tri60K mesh: P = 64, N = 60, 005, £ = 89, 440

To give a flavour of the sort of results coming from the JOSTLE code we show two typical runs. Table 2
gives, for the Tri60K mesh and P = 64, a breakdown of the results obtained after the initial partition and
after each of the three optimisation phases. Because both the load-balancing and local refinement phases
deal only with border nodes, most of the time is spent in the energy minimisation part of the optimisation
where all of the graph edges are visited at each iteration (except where a subdomain hasn’t changed and
values from the previous iteration are used). Here we see that the subdomain heuristic does a very good
job of minimising | .| although the load-balance is not ideal and future work will look at trying to improve
the balancing part of this phase.

phase graph iterations | ¢(s) | |E.| | 6% | Dg
graph coarsening | G(60005,89440) 21113 - - -
initial partition g(4064,11147) - 10.03 | 4628 | 0.96 | 5.50
optimisation g(4064,11147) 48 | 2.58 | 3305 | 3.62 | 4.59
optimisation (G(60005, 89440) 14 | 3.10 | 2432 | 0.32 | 4.62

Table 3: Results for the Tri60K mesh: P = 64, N = 60,005, E = 89,440

Table 3 shows (in less detail) the same run using graph coarsening. Having coarsened the graph G to create
a reduced graph g(N = 4,064; £/ = 11,147), a partition is generated and optimised. The partition is then
interpolated onto the full graph and reoptimised. As can be seen, most of the iterations take place on g
and as a result, the runtime is substantially reduced. Perfect load-balance is not attained for g, however,
because the clusters do not have uniform node weights and the |E,| figure is not greatly optimised because
the clusters have fairly irregular shapes. For this reason it is well worth doing some further optimisations
on the full graph G and we see that the load is nearly balanced and | E.| cut by 30% in just 14 iterations.

Comparing the two examples, graph coarsening reduces the overall run time by 50% and in addition, for
this example the |E.| figure is actually lower with coarsening. This is somewhat surprising and it is the
authors’ experience that the reverse is typical, with the solution quality reflecting the amount of work that
is put in to achieve it.

5.3 Comparative results

In order to demonstrate the quality of the partitions we have compared the method with two of the most
popular partitioning algorithms, Greedy and Multilevel Recursive Spectral Bisection (MRSB). The Greedy
algorithm, [4], is actually performed as part of the JOSTLE code and is fast but not particularly good at
minimising cut edges. MRSB, on the other hand, is a highly sophisticated method, good at minimising | £|
but suffering from relatively high runtimes, [1]. The MRSB code was made available to us by one of its
authors, Horst Simon, and run unchanged with contraction thresholds of 100 and 500.

The JOSTLE code can be run in three different configurations, each easily specified to the code in a defaults
file. Two of these use the graph coarsening, §4.1.2; JOSTLE/fast reduction’ uses the full algorithm as
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described on the reduced graph and then only uses the load-balancing and local-refinement on the full
graph; ‘JOSTLE/reduction” additionally uses the subdomain heuristic, §3.2, although with a cut off after 5
iterations. The other configuration, JOSTLE’, does not use any graph coarsening.

Method B, | t(s) | 6% | D,
GREEDY 4046 | 029 | 0.00 | 534
JOSTLE/fast rdtn | 2966 | 1.86 | 0.82 | 4.59
JOSTLE/reduction | 2949 | 2.88 | 1.23 | 4.59

JOSTLE 2972 | 511 | 1.23 | 4.62
MRSB/100 3122 | 11.59 | 0.00 | 4.62
MRSB/500 3097 | 17.90 | 0.00 | 4.47

Table 4: Results for the Barth5 mesh: P = 64, N = 15,606, £/ = 45,878

Table 4 shows results for the Barth5 meshand P = 64. Asis reflected in this table, throughout all experiments
carried out JOSTLE appears to achieve approximately the same partition quality as MRSB though much
more rapidly. The |E.| figures are slightly lower than for MRSB and the imbalances are generally small
(smaller than one would expect for simulated annealing, say); for example, the 1.23% imbalance arises from
the most heavily loaded processor having 247 nodes as opposed to an optimum of 244.

GREEDY JOSTLE MRSB
Pl BI [ 6s) | B[ W) | [B1] @)
16 | 10939 | 3.04 6212 | 14.70 6213 38.11
32 | 15549 | 3.17 9038 | 15.72 9459 61.17
64 | 20017 | 1.87 | 12426 | 16.56 | 13035 | 107.16
128 | 26274 | 2.07 | 15784 | 23.78 | 17751 | 148.30
256 | 33556 | 2.14 | 22250 | 24.51 | 22745 | 172.47

Table 5: Results for Tet100K mesh: N = 103,081, £ = 200,976

Table 5 gives results for the Tetl00K mesh and varying P. Here the JOSTLE code has been run in the
‘JOSTLE/reduction” configuration and MRSB has been run with a contraction threshold of 100. Again
we see approximately equivalent partition quality between JOSTLE and MRSB although with much faster
run times. More importantly, the timings for JOSTLE increase more slowly with P than those for MRSB,
suggesting that as machine sizes increase it should be even more efficient.

Pl |E|| ts)| 6% | Da
10 | 49549 | 133.37 | 0.00 | 4.60
20 | 64088 | 133.67 | 0.00 | 630
50 | 87060 | 132.32 | 0.00 | 9.68
100 | 116966 | 148.85 | 0.01 | 10.98
200 | 129963 | 167.92 | 0.02 | 12.38

Table 6: Results for TetlM mesh: method is ‘JOSTLE/fast rdtn’, N = 1,119,663, . = 2,212,012

In the final set of results, table 6, we offer an example of how fast the code can be on a workstation even
for a huge (million node) mesh. Indeed these runs were carried out on a Sun SPARC station which is
about 50% slower than the Silicon Graphics Indigo 2 used for the other experiments. We were unable to
run MRSB on this problem because we could not compile the code with enough memory. However, these
runtimes compare very favourably with a similar sized problem (1,010,174 tetrahedra) partitioned using a
parallelised RSB code which took 178 seconds to run on 256 nodes of a Thinking Machines CM5 [10].
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6 Conclusion

We have outlined a new method for optimising graphs partitions with a specific focus on its application
to the mapping of unstructured meshes onto parallel computers. In this context the graph-partitioning
task can be very efficiently addressed through a two-stage procedure — one to yield a legal initial partition
and the second to improve its quality with respect to interprocessor communication and load-balance. The
method is further enhanced through the use of a clustering technique. The resulting software tool, JOSTLE,
has been designed for implementation in parallel for both static and dynamically refined meshes. For the
experiments reported in this paper on static meshes of up to one million nodes, the JOSTLE procedures are
an order of magnitude faster than existing techniques, such as Multilevel Recursive Spectral Bisection, with
equivalent quality.

Future work on this technique will include further study into distributed load-balancing algorithms, a
parallel implementation and work on the mapping of meshes to machine topologies.
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