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Abstract

Three parallel optimisation algorithms for use in the context of multilevel graph partitioning for un-
structured meshes are described. The first, interface optimisation reduces the problem to a set of inde-
pendent problems in interface regions. Alternating optimisation is restriction of this technique in which
mesh entities are only allowed to migrate between subdomains in one direction. The third treats the gain
as a potential field and uses the concept of relative gain for selecting appropriate vertices to migrate. The
results are compared and seen to produce very high global quality partitions, very rapidly. The results are
also compared with another state-of-the-art partitioning tool and shown to be of higher quality although
taking longer to compute.
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1 Introduction

Many of todays computational modelling challenges are of a size and complexity that requires the solution
to be calculated in parallel on an unstructured mesh. Distributing the mesh across a parallel computer so
that the computational load is evenly balanced and the data locality maximised is known as mesh partition-
ing and is often achieved by partitioning a graph corresponding to the communication requirements of the
mesh. A particularly popular and successful class of algorithms which address this partitioning problem
are known as multilevel algorithms. They usually combine a graph contraction algorithm which creates a
series of progressively smaller and coarser graphs together with a local optimisation method which, start-
ing with the coarsest graph, refines the partition at each graph level. In this paper we present three parallel
optimisation algorithms for refining a partition and if necessary balancing the load. We also present an
enhancement of the technique which uses imbalance to achieve higher quality partitions.

In particular, the algorithms described in this paper are designed to address the three problems that arise
in partitioning of unstructured finite element and finite volume meshes. Specifically the:

(i) static partitioning problem (the classical problem) which arises in trying to distribute an existing
mesh amongst a set of processors;

(ii) static load-balancing problem which arises from a mesh that has been generated in parallel;

(iii) dynamic load-balancing/partitioning problem which arises from either adaptively refined meshes,
or meshes in which the computational workload for each mesh entity can vary with time or even
machines on which (due to external user load) the computational resources may vary.
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In the second two cases, (ii) & (iii), the initial data is a distributed graph which may be neither load-balanced
nor optimally partitioned. One way of dealing with this is to ship the graph back to some host processor,
run a serial static partitioning algorithm on it and redistribute. However, this is unattractive for many
reasons. Firstly, an

�������
overhead for the mesh partitioning is simply not scalable if the solver is running at�������
	��

. Indeed the graph may not even fit into the memory of the host machine and thus incur enormous
delays through memory paging. In addition, a partition of the graph (which may even be optimal) already
exists, so it makes sense to reuse this as a starting point for repartitioning, [29, 36]. In fact, not only is the
load-balancing likely to be unnecessarily computationally expensive if it fails to use this information, but
also the mesh elements will be redistributed without any reference to their previous ‘home processor’ and
heavy data migration may result. Thus, because the graph is already distributed, it is a natural strategy to
repartition it in situ.

In this paper we concentrate on the on the static case, (i), where the mesh is initially read in from file
in parallel giving a crude but fast initial distribution. However, the techniques described contain a load-
balancing component and seem well able to handle the static and dynamic load-balancing problems, (ii) &
(iii), and this has been demonstrated for one of the algorithms in the dynamic case, [3, 36].

1.1 Overview

This paper contains a synopsis of research at the University of Greenwich that has taken place over the past
five years into parallel optimisation algorithms for multilevel mesh partitioning. Several new ideas, not
previously published before, are presented whilst other techniques are summarised. Related work in the
area is discussed in � 1.3.

To introduce the subject, in Section 2 we describe the multilevel paradigm and give a summary of a new en-
hancement, the idea of a multilevel balancing schedule (previously used with a serial multilevel partitioner
in [33]). In Section 3 we then describe three different parallel optimisation algorithms which both balance
a partition of the graph to within some given tolerance and also refine the quality in terms of the weight of
cut edges. Section 4 contains a description of the (complex) parallel implementation of the partitioner. In
Section 5 we present results and comparisons of the three optimisation algorithms together with a hybrid
scheme and a comparison with another state-of-the-art parallel partitioner. Finally in Section 6 we draw
some conclusions and present some ideas for further investigation.

1.2 Notation and Definitions

Let ��� ��������� be an undirected graph of vertices
�

, with edges
�

which represent the data dependencies
in the mesh. The graph vertices can either represent mesh nodes (the nodal graph), mesh elements (the dual
graph), a combination of both (the full or combined graph) or some special purpose representation to model
the data dependencies in the mesh. We assume that both vertices and edges are weighted (with positive
integer values) and that � ��� denotes the weight of a vertex � and similarly for edges and sets of vertices and
edges. Given that the mesh needs to be distributed to

	
processors, define a partition � to be a mapping

of
�

into
	

disjoint subdomains ��� such that ����� �!� �
. The partition � induces a subdomain graph on 

which we shall refer to as �"���#" � � ��$%� ; there is an edge or link
� � � � �'& � in

$
if there are vertices �)( � �
*#+ �

with
� �,( � �
* � + �

and �,(-+.�/� and �0*1+2�3& and the weight of a subdomain is just the sum of the weights
of the vertices in the subdomain, � ���/�4�6587:9,;:<=� ��� . We denote the set of inter-subdomain or cut edges (i.e.
edges cut by the partition) by

�?>
(note that � �@> �)�A� $ � ). Vertices which have an edge in

�B>
(i.e. those which

are adjacent to vertices in another subdomain) are referred to as border vertices. Finally, note that we use the
words subdomain and processor more or less interchangeably: the mesh is partitioned into

	
subdomains;

each subdomain ��� is assigned to a processor C and each processor C is assigned a subdomain �3� .
The definition of the graph partitioning problem is to find a partition which evenly balances the load or
vertex weight in each subdomain whilst minimising the communications cost. To evenly balance the load,
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the optimal subdomain weight is given by �EDF�HGI� � � �
	BJ (where the ceiling function GLK J returns the smallest
integer greater than K ) and the imbalance is then defined as the maximum subdomain weight divided by the
optimal (since the computational speed of the underlying application is determined by the most heavily
weighted processor). As is usual, throughout this paper the communications cost will be estimated by � � > � ,
the weight of cut edges or cut-weight, although see � 3.2 for further discussion on this point. A more precise
definition of the graph partitioning problem is therefore to find � such that �'�NM � and such that � � > � is
minimised. Note that perfect balance is not always possible for graphs with non-unitary vertex weights.

1.3 Related work

Whilst there has been a considerable amount of research into mesh partitioning recently, little of it seems to
be specifically on the parallel solution of the graph partitioning problem. Nonetheless, a number of parallel
methods do exist. The multilevel recursive spectral bisection algorithm, [2], has been parallelised [1]; this
greatly improves the performance but the algorithm is still relatively slow (because of the need to find
eigenvectors of a graph and the resulting requirement for expensive floating point linear algebra). A similar
problem arises for HARP, [31], a parallel spectral inertia bisection algorithm, although once the eigenvectors
are calculated initially (and possibly off-line) the algorithm can be repeatedly used for dynamically load-
balancing graphs where the graph weights change (providing the edge topology remains fixed). A number
of parallel single-level algorithms have also been developed, such as [4, 7, 8, 27], however without the global
view provided by the multilevel techniques it is unclear whether such methods can achieve the highest
quality partitions and they are often more suited to incremental dynamic partitioning and load-balancing
where the existing partition may already be of high quality.

Most closely related to the work presented here is the parallel graph partitioner ParMETIS of Karypis & Ku-
mar, [23, 29]. This uses an alternating tolerance-based optimisation algorithm similar to the one described
in � 3.6 (although we have additionally enhanced the algorithm with the use of a multilevel balancing sched-
ule, � 2.5, and by incorporating flow directly into the optimisation process). Perhaps the major difference
in strategy though is the approach to vertex migration. ParMETIS uses virtual migration and so the graph
distribution is fixed throughout the optimisation and vertices which migrate from one subdomain to an-
other simply have their subdomain field changed and thus a processor may own subsets of several (or even
all) subdomains. In the algorithms described here, each subdomain is mapped to a single processor and
vertices which migrate from one subdomain to another are actually copied and recreated on the destination
processor (described in Section 4). The effects of these different strategies on the optimisation are discussed
in � 5.3.

2 The multilevel paradigm

In recent years it has been recognised that an effective way of both speeding up partition refinement and,
perhaps more importantly giving it a global perspective is to use multilevel techniques. The idea is to
group vertices together to form clusters, use the clusters to define a new graph and recursively iterate this
procedure to create a series of increasingly coarse graph until the size of the coarsest graph falls below
some threshold. A fast and possibly crude initial partition of the coarsest graph is calculated and then
successively interpolated onto and optimised on each of the graphs in reverse order. This sequence of
contraction followed by repeated interpolation/optimisation is known as the multilevel paradigm and has
been successfully developed as a strategy for overcoming the localised nature of the Kernighan-Lin (and
other) algorithms. The multilevel idea was first proposed by Barnard & Simon, [2], as a method of speeding
up spectral bisection and improved by Hendrickson & Leland, [15] who generalised it to encompass local
refinement algorithms.
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2.1 Graph contraction

To create a coarser graph #OQP ( �R� OQP ( �S� OTP ( � from ?O �R� O ��� O � we use a variant of the edge contraction algorithm
proposed by Hendrickson & Leland, [15]. The idea is to find a maximal independent subset of graph edges
and then collapse them. The set is independent because no two edges in the set are incident on the same
vertex (so no two edges in the set are adjacent), and maximal because no more edges can be added to the
set without breaking the independence criterion. Having found such a set, each selected edge is collapsed
and the vertices, U'( � U *�+ � O say, at either end of it are merged to form a new vertex �V+ � OQP ( with weight� ��� �W� U ( �YXZ� U * � . Edges which have not been collapsed are inherited by the child graph, [OQP ( , and, where
they become duplicated, are merged with their weight summed. This occurs if, for example, the edges� U ( � U \ � and

� U * � U \ � exist when edge
� U ( � U * � is collapsed. Because of the inheritance properties of this

algorithm, it is easy to see that the total graph weight remains the same, � � OQP ( �'�]� � OS� , and the total edge
weight is reduced by an amount equal to the weight of the collapsed edges.

A simple way to construct a maximal independent subset of edges in serial is to visit the vertices of the
graph in a random order and pair up or match unmatched vertices with a unmatched neighbour. It has
been shown, [21], that it can be beneficial to the optimisation to collapse the most heavily weighted edges
and our matching algorithm uses this heuristic.

2.1.1 Local matching

To carry out the matching, each processor maintains a double linked list of vertices that it owns which
has internal vertices first and boundary vertices at the end of the list. Within the two sections the internal
& boundary vertices are randomly ordered. Starting at the head of the list the each vertex is matched
with a random unmatched local neighbour and both vertices are removed from the list. If a vertex has no
unmatched local neighbours it is matched with itself and removed. So far this procedure is entirely parallel
(with no dangers of conflicts since only local edges between core vertices are selected) but usually leaves a
few boundary vertices who have no unmatched local neighbours but possibly some unmatched non-local
neighbours.

2.1.2 Parallel matching

The simplest solution would be to terminate the matching at this point. However, in the worst case scenario,
if the initial partition is particularly bad and most vertices have no local neighbours (for example a random
partition), little or no matching may have taken place. We therefore continue the matching with an parallel
iterative procedure which finishes only when there are no vertices unmatched. Within each iterative step,
each processor first carries out a halo update to notify its neighbours which vertices are unmatched. It
then visits its list of unmatched vertices, removing those with no unmatched neighbours, or selecting a
neighbouring external vertex to match with. It next carries out another halo update is to notify neighbours
of this selection and finally the unmatched vertices are visited again, matched whenever selection is mutual
(i.e. when processor C has matched vertex UV+_^ � with �`+_^ & , and processor a has matched vertex �1+_^ &
with U�+�^b� ) and one of each pair of matching vertices is randomly selected to migrate to the processor
owning the other. Finally, after all vertices have been matched, any that have been selected for migration
are transferred.

Note that for algorithm to avoid selection cycles (i.e. U selects � , � selects c and c selects U ) and thus locking,
the selection of a match is made in a pseudo-random way. For each edge

� U � � � a random number generator
is seeded with the sum of the global indices of U and � and random number generated. The edge with the
highest number is then selected. The reasoning behind this is explained in [20].
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2.1.3 Construction of the coarsened graph

The construction of the coarsened graph is essentially completely parallel as, after migration, all vertices
are now matched with a local neighbour. A global maximum operation is used to find d , the maximum
number of clusters on any one processor. Each processor C then numbers the new vertices in the reduced
graph that it is creating from C_e1d upwards and this ensures that the new global indices are unique.

2.2 The initial partition

The normal practice of the serial multilevel strategy is to construct the series of graphs until the number
of vertices in the coarsest graph is smaller than some threshold and then carry out an initial partition. In
parallel, the graph is already distributed and so an initial partition already exists. Here, following the idea
of Gupta, [13], we continue coarsening until the number of vertices in the coarsest graph is the same as the
number of subdomains,

	
, and this gives us automatically an initial partition with one vertex per subdo-

main. Unlike Gupta, however, we do not carry out repeated interpolation/contraction cycles of the coarsest
graphs to find a well balanced initial partition but instead, since our optimisation algorithms incorporate
balancing, we commence on the interpolation/optimisation sequence immediately.

2.3 The global graph

Although contraction down to a single vertex per subdomain is rapid in serial (since at the coarsest levels
the graphs become very small indeed), in parallel it can be relatively inefficient since each contraction in-
volves several communication phases. For this reason, once the size of the graph falls below a given thresh-
old, each processor broadcasts its portion so that every processor has a copy of the entire graph (which we
refer to as the global graph). The contraction and interpolation/optimisation process can then continue en-
tirely in serial with every processor duplicating the work. The serial algorithms used are described in full in
[33], although essentially the techniques are very similar to those discussed here and in particular the serial
optimisation algorithm which incorporates flow-based load-balancing, Kernighan-Lin style hill-climbing,
Fiduccia-Mattheyses style bucket sorting and imbalance tolerance is similar to that described here as the
interface optimisation algorithm, � 3.5. The optimum threshold at which to construct the global graph is
of course machine dependent (based on the ratio of the cost of communication and computation) but the
default setting (which can be reset at run-time by the user) for the results in this paper is 20 vertices per
processor.

2.4 Parallel partition interpolation

Having optimised a graph  O , the partition must be interpolated onto its parent  OLf ( . The interpolation
itself is a trivial matter; if a vertex �Z+g�O is in subdomain � � then the matched pair of vertices that it
represents, � ( & � * , will be in � � . However, during optimisation, we only migrate the vertices of �O (and
not the entire parent hierarchy) and so if � has migrated from its original processor then � ( & � * will not be
stored locally and may not even be stored on a neighbouring processor. Thus for each �N+h� � which was
not created locally, processor C must inform the originating processor (which can be easily determined by
the global index of � – see above) where it now resides and the parent vertices must be migrated to � � . Each
processor therefore sends messages to the originators of all the vertices it owns, receives the corresponding
messages about vertices it created and which have migrated away (by continually polling – waiting on
incoming messages – until it knows the destination of all the vertices it created) and then migrates parent
vertices to their child’s new subdomain.
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2.5 Multilevel balancing schedule

It has been noted previously (e.g. [22, 35]) that allowing a small amount of imbalance often leads to a higher
partition quality. We also observe that one of the most attractive features of the multilevel paradigm is the
way in which the partition quality (usually the number of cut edges) is refined gradually as the multilevel
optimisation proceeds; i.e. after each refinement the partition quality of a given graph  O is usually better
than that of  OTP ( (because there are more degrees of freedom). We combine both observations (imbalance
can lead to higher partition quality and gradual refinement of quality being an attractive feature) by al-
lowing a variable amount of imbalance which is reduced gradually as the multilevel optimisation proceeds.
The idea is that by allowing a large imbalance in the coarsest graphs a better partition may be found than
if balance was rigidly enforced, but that this imbalance will not cause degradation in the final partition of
the finest graph if removed gradually throughout the multilevel procedure. Note particularly the second
statement – if the finest graph starts the refinement with a high quality but poorly balanced partition, then
much of the quality may be destroyed by balancing.

In order to talk about improving the balance gradually from one graph level to another, for each graph,?O , let i�O be the target subdomain weight. If every subdomain, � � , is not heavier than this target (i.e.j!kYl � � � � M�i�O ) then we say that the graph is sufficiently balanced and the optimisation can concentrate on
refinement alone (so long as the balance is not destroyed). However, if j�k
l � � � �nmEi�O , then the optimisation
must concentrate on balancing (with some regard to refinement). Clearly this series o:ipOrq is an arbitrary
heuristic, but it must be determined with two caveats:s if it ascends too rapidly, the balance inherited by �O from ?OQP ( may cause the partition quality to be

lost in trying to attain itO .s if it ascends too slowly, the benefits for the partition quality of having a high imbalance tolerance may
never be seen.

In [33] we derive (and report results from) different balancing schedules but here use the most successful
formula from [33] and set i3Ot�vu:O � , where �w�WGI� � � �Y	BJ is just the optimal subdomain weight (see � 1.2) anduxO3� y{z XE|!} 	� OLf (�~1��
�
where

� O�f ( is the number of vertices in �OLf ( , the parent graph of #O . In other words a graph �O is consid-
ered balanced if the imbalance is less than u O � z Xv| � ����T� �

� �� for ��m�� . For the final (and original) graph,?� , which has no parent, we can either set u
��� z
to aim for perfect balancing or, as is often the case, e.g.

[22], allow a slight imbalance. For the results in this paper we have chosen to set u)�B� z0� �,� and then we setuxO'� j!kYl � ux� � z Xh| � ����T� �
� �� � for ��m2� .

3 Three balancing and refinement optimisation algorithms

In this section we describe and compare three parallel iterative optimisation algorithms all of which com-
bine load-balancing and partition quality refinement. Initially we describe the concepts of load-balancing,
gain & preference functions and bucket sorting (Sections 3.1, 3.2 and 3.3, respectively) and then in � 3.4 we
describe the outer iterative loop of the optimisation common to all three algorithms. The three algorithms
are motivated in � 3.4 and then described in detail in Sections 3.5, 3.6 and 3.7.

3.1 Load-balancing: calculating the flow

Given a graph partitioned into unequal sized subdomains, we need some mechanism for distributing the
load equally. To do this we solve the load-balancing problem on the subdomain graph,  " , (see � 1.2)
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in order to determine a balancing flow, a flow along the edges of  " which balances the weight of the
subdomains. By keeping the flow localised in this way, vertices are not migrated between non adjacent
subdomains and hence (hopefully) the partition quality is not degraded (since a vertex migrating to a
subdomain to which it is not adjacent is almost certain to have a negative gain).

This load-balancing problem, i.e. how to distribute
�

tasks over a network of
	

processors so that none
have more than G �!�
	BJ , is a very important area for research in its own right with a vast range of applica-
tions. The topic is introduced in [30] and some common strategies described. Much work has been carried
out on parallel or distributed algorithms and, in particular, on diffusive algorithms, e.g. [5, 11], but here we
use an elegant technique developed by Hu & Blake, [17, 19], which converges faster than diffusive methods.
This method was derived to minimise the Euclidean norm of the transferred weight although it has recently
been shown that this is true for all diffusion methods, [6, 18]. The algorithm simply involves solving the
system

$�� ��� where
$

is the Laplacian of the subdomain graph:$ ��& ���� � degree
� � � � if C��va� z if CN��va and � � is adjacent to � &� otherwise

and where � � ��� � � � � � (the weight of � � less the optimal subdomain weight). The weight to be trans-
ferred across edge

� � � � � & � is then given by K � � K & . Note that this method is closely related to diffusive
algorithms except that the diffusion coefficients are not fixed but are determined at each iteration by a con-
jugate gradient search. The algorithm is employed as suggested in [17], solving iteratively with a conjugate
gradient solver. However, whilst this is an algorithm which is easily parallelised, we have found it more
cost effective, for the numbers of processors which we used for testing (up to 128), to broadcast a copy of the
subdomain graph around the parallel machine and duplicate the (serial) solution of the problem on every
processor. Clearly for large numbers of processors this will not scale and so we have also implemented a
fully parallel version (although it is not used for the tests here).

This algorithm (or, in principle, any other distributed load-balancing algorithm) generates a balancing flow
across edges of the subdomain graph, i.e. �p��& along the edge

� � � � �'& � , which is stored in memory. However,
the optimisation algorithms which actually decide which vertices to move may not be able to satisfy the
required flow instantly (because they are limited in the amount of weight they can transfer in one iteration)
and thus decrement the values for � ��& by any weight that is actually transferred. Indeed for various reasons,
the optimisation may exceed the required flow in which case the appropriate flow in the opposite direction
is recorded (e.g. if � ��& � z � but processor C actually transfers a weight of 15 then � ��& is set to 0 and � &�� set
to 5). In this way a legitimate balancing flow is always maintained even if it takes many iterations to realise
it. Note that in the following we require that flow is positive ( � ��&B� � and � &���� � ) and unidirectional – i.e.
either � ��& �v� or � &r� �8� (or both). If either of these requirements are false then the flow can be adjusted to
meet them by setting � ��& �v� ��& � min

� � ��& � � &�� � and � &�� �8� &�� � min
� � ��& � � &�� � .

Occasionally whilst optimisation is taking place vertex migration can cause the subdomain graph to change
(e.g. two non-adjacent subdomains may become adjacent). If an edge disappears over which flow is sched-
uled to move the subdomain graph must be rebalanced although we speed this process up by adding the
extraneous flow back into its source subdomain and rebalancing the graph from that point. The number of
possible rebalances on any graph is restricted to avoid cyclic behaviour.

3.2 The gain and preference functions

A key concept in all three optimisation algorithms are the ideas of gain and preference. Loosely, the gain,
gain

� � � a � , of a vertex � in subdomain ��� can be calculated for every other subdomain, �p& , a ��WC , and
expresses some ‘estimate’ of how much the partition would be ‘improved’ were � to migrate to ��& . The
preference pref

� � � is then just the value of a which maximises the gain – i.e. pref
� � � �8a where gain

� � � a �
attains j�k
l4¡ 90� gain � � �I¢
� . Throughout the following vertices are only allowed to migrate to the subdomain
to which their preference is set.
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Note that the gain is usually directly related to some cost function which measures the quality of the parti-
tion and which we aim to minimise. Typically the cost function used is simply the total weight of cut edges
or cut-weight, � � > � , and then the gain expresses the change in � � > � . More recently, there has been some
debate about the most important quantity to minimise and in [32], Vanderstraeten et al. demonstrate that it
can be extremely effective to vary the cost function based on a knowledge of the solver, ideas which, in [34],
we have used to extend multilevel techniques to optimise for subdomain shape or aspect ratio. Whichever
cost function is chosen, however, the idea of gains is generic.

For the purposes of this paper we shall assume that gain
� � � a � just expresses the reduction in the cut-

weight, � � > � . Note that there can never be a gain in the cut-weight if a vertex � is transferred to a subdomain�3& to which it is not adjacent (since there will be no cut edges between � and ��& ). For this reason, we only
calculate gains for each border vertex to their adjacent subdomains and this in turn restricts the preference
to such subdomains. Indeed, in a high quality partition, most border vertices will only be adjacent to one
other subdomain, � & say, and for such vertices the preference is simply a . As a consequence processors only
migrate vertices to neighbouring subdomains along edges of the subdomain graph.

3.3 Bucket sorting

The bucket sort is an essential tool for the efficient and rapid sorting of vertices by their gain. The concept
was first suggested by Fiduccia & Mattheyses in [10] and the idea is that all vertices of a given gain £ are
placed together in a ‘bucket’ which is ranked £ . Finding a vertex with maximum gain then simply consists
of finding the (non-empty) bucket with the highest rank and picking a vertex from it. If the vertex is
subsequently migrated from one subdomain to another then its gain and the gains of all its neighbours have
to be adjusted and resorted by gain. Using a bucket sort for this operation simply requires recalculating
the gains of the vertex and its neighbours and transferring them to the appropriate buckets, an essentially
localised operation. If a bucket sort were not used and, say, the vertices were simply stored in a list in gain
order, then the entire list would require resorting (or at least merge-sorting with the sorted list of adjusted
vertices), an essentially

���R���
operation for every migration.

In our implementation each bucket is (as usual) represented by a double linked list of vertices (since vertices
must be extracted from the list without having to search through it). However, we additionally prefer to
sort the vertices by gain and then by weight. The reasoning behind this is simple: if, for example, a transfer
of weight 3 between two subdomains is allowed then it is preferable to pick 3 vertices each of gain 1 and
weight 1 rather than 1 vertex of gain 1 and weight 3. Conversely if a transfer of weight 2 is required then it
is better to move 1 vertex of weight 2 and gain � z rather than 2 vertices of weight 1 and gain � z . Thus we
order the vertices primarily by gain and then by weight, lightest first for positive gains and heaviest first
for negative gains. Rather than sorting the contents of each bucket we simply provide a different bucket
for each gain/weight combination and so, if ¤ represents the weight of the largest vertex in a given graph
gain

� � � the gain of a vertex � , we rank � with the formula:

rank
� � � �¦¥ gain

� � � e`¤§XE¤ � � �t� if gain
� � � m.�

gain
� � � e`¤§X8� �t� � z

otherwise

which provides the desired ordering. The ranking is unique for each combination of gain
� � � and � �t� be-

cause

z M¨� ���4M2¤ for all vertices � (it is assumed that � ���4mh� ) and so

gain
� � � e©¤ªM rank

� � ��« ¬
gain

� � � X z® e`¤
since

rank
� � � M gain

� � � e`¤§Xh¤ � z «
gain

� � � e©¤§Xh¤ �
Note that in the very coarse graphs at the top of the multilevel process, it is possible or even common
to produce graphs with a wide range of vertex weights and potential gains. For this reason, rather than
maintaining a sparse but potentially huge array of pointers to buckets, we store the non-empty buckets in a
binary tree adding and deleting buckets as required. This tree structure may still be large but cannot exceed
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the number of border vertices in the graph in size. In the sections below the term bucket tree will be used
to refer to the binary tree of buckets.

3.4 Parallelising a serial iterative optimisation algorithm
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Figure 1: An example graph with subdomains � � , � & & � ¡ .
Consider the graph depicted in Figure 1. The subdomains �t� , �'& & � ¡ contain 21, 15 & 9 vertices respectively
and so we can calculate a balancing flow to be 4 from �t� to �3& ( �3��&���¯ ), 2 from � � to � ¡ and 2 from �'& to� ¡ (note that this is not a unique solution). We can also determine the gain and preference for each border
vertex as shown – for example as 2C for vertex � meaning that it has a gain of 2 and a preference to migrate
to � � (or in other words, migrating vertex � from subdomain � & to subdomain � � will reduce the cut-weight
by 2). A typical serial Kernighan-Lin (KL) type algorithm for optimising this partition (such as described
in [33]) would consist of inner and outer iterative loops. The inner loop picks vertices (usually those in the
bucket tree with the highest gain) and migrates them from one subdomain to another. It will not usually
visit any vertex more than once during the course of an inner loop in order to prevent cyclic behaviour
and terminates when the bucket tree is empty or when there is little prospect of further improvement with
the vertices left in the bucket tree. The outer loop is simply repeated applications of the inner loop and
terminates when no migration takes place within an inner loop.

while (optimising) {
optimising = 0;
calculate gain & preference of own border vertices;
halo update of gains & preferences;
determine which vertices to migrate (inner loop);
if (migration required) {

optimising = 1;
bulk migration of vertices;

}
global update (optimising);

}

Figure 2: The outer iterative loop.

The main problems in parallelising this procedure lie within the inner loop. Firstly, if the graph is dis-
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tributed, migrating one vertex at a time involves far too much communication overhead (with most of the
processors lying idle most of the time) and for this reason we employ a bulk migration scheme where each
processor finds as many border vertices as possible to migrate and moves them once per iteration of the
outer loop. The outer loop (executed concurrently on each processor) is shown in Figure 2. Note that it
contains three communication steps, a halo update of the border vertices gain and preference values, the
migration of vertices to their neighbours and the global update of the optimising flag (see Section 4).

v1 v2 v3 v4
Sp Sq

1 2 1

v1 v2 v3 v4

1 2 1

Figure 3: An example collision when vertices with postive gains migrated simultaneously result in an
increase in cost.

The second and more difficult problem in parallelising the serial algorithm lies in determining which ver-
tices to migrate. In fact, the swapping of vertices between two subdomains is an inherently non-parallel
operation and hence there are some difficulties in arriving at efficient parallel versions, [28]. Since all the
processors are acting in parallel on the vertices that they own, simply moving vertices with the highest gain
is not a satisfactory solution as it means that adjacent vertices may be swapped simultaneously (an event
often known as a collision) and this may lead to an increase in the cost, particularly in graphs with weighted
edges. For example, given the situation in Figure 3 with edges weighted as shown, processor C may wish
to migrate vertex �0* to �'& (on the basis that it has a gain of 1) while at the same time processor a wishes
to migrate vertex � \ to �/� for the same reason. Whilst the migration of either of these vertices individually
will result in a reduction in the cut-weight of 1, the migration of both at the same time will actually result
in an increase in cut-weight from 2 to 4. We refer to this sort of non-optimal behaviour as a collision.

An important part of our strategy for tackling this problem of collisions is to note that since every border
vertex has a subdomain and a preference we can isolate border regions and define subsets ^?��&��°o:�8+^b��D pref � � � �¦a)q , or in other words, ^±��& is the set of vertices in the border ^±� of subdomain � � with a
preference a . We will refer to these sets as subdomain faces. Figure 4(a) show the six subdomain faces for
the example graph in Figure 1. Each pair of subdomain faces, ^ ��& �E^ &�� then forms an interface region ² ��& .
Note that since the preference of every border vertex is fixed throughout each outer iteration (because it is
only determined once during the iteration) then these interfaces cannot change during that iteration. This
allows us to isolate regions of the graph which in turn helps to avoid collisions.

In the following three sections we describe in detail three different algorithms addressing this fundamental
problem of collisions but to motivate them quickly the algorithms can be summarised as:–s Interface Optimisation. A serial optimisation algorithm is executed independently in each of the

interface regions ²{��& by either one of the processors C or a . Figure 4(b) shows the three interface
regions for the example graph in Figure 1.s Alternating Optimisation. One of each pair of subdomain faces is selected and a tolerance-based
algorithm chooses vertices from that face for migration (to its opposite face). A certain amount of
imbalance tolerance is crucial for this algorithm to work. In the following iteration of the outer loop
the alternate face is selected. Figure 4(c) shows an example of the three selected regions in a given
iteration of the outer loop for the graph in Figure 1.s Relative Gain Optimisation. If we think of the gain as a force or potential we can imagine a relative
gain for every border vertex according to the neighbouring vertices in the opposite face and an ‘ap-
propriate’ proportion of vertices are moved highest relative gain first. Figure 4(d) shows the relative
gains of the border vertices for the graph in Figure 1.
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Figure 4: An example graph showing (a) subdomain faces; (b) interface regions for independent optimisa-
tion; (c) one of each pair of faces selected of alternating optimisation; and (d) relative gains as a ‘potential
field’.

3.4.1 Global convergence

Note that although all three algorithms tend to converge robustly (especially the interface algorithm) with
the global cost, � � > � , decreasing monotonically, unlike the serial algorithm, [33], this cannot be guaranteed.
In order to prevent cyclic ‘thrashing’ therefore, the outer loop is terminated either after no migration has
taken place during that iteration or after a couple of iterations if the cost has not decreased.

3.5 Interface optimisation

The interface optimisation technique works by treating each interface as an independent problem and ex-
ecuting a serial optimisation algorithm there. Thus for ² ��& , the interface between � � and � & , one of the
processors, C say, examines both its border and halo vertices to decide not only which of its vertices should
migrate to neighbour a , but also which vertices should transfer from a to C . The distribution of interfaces
amongst processors is carried out with a crude scheduling algorithm – simply that processor C handles ² ��&
if either C « a and a is odd or if C�m³a and a is even. All the interfaces are optimised simultaneously in
parallel (although each processor may have to optimise a list of several) and then the processors pass lists
to neighbours of non-local vertices which must be transferred (i.e. if processor C has optimised the interface
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² ��& it must then tell processor a which vertices need to be transferred from � & to � � ). Finally a bulk migra-
tion step occurs (as in Figure 2) and all vertices marked for migration are actually transferred between the
processors.

For each interface the serial optimisation algorithm is very similar to that described in [33] and is initialised
by inserting all the vertices in the interface into a bucket tree. The algorithm then proceeds by examining
vertices highest gain first (by always picking vertices from the highest ranked bucket), testing whether
the vertex is acceptable for migration (see below � 3.5.1) and then transferring it out of the bucket tree. It
terminates when the tree is empty although it may terminate early if the partition cost (i.e. the cut-weight)
rises too far above the cost of the best partition found so far. This type of early termination is typical of
KL type algorithms, [12, 16]; without it, the entire interface subgraph may be searched with diminishing
prospect of finding a better solution along the search path.

3.5.1 Migration acceptance

Let i refer to the target weight for the graph (see � 2.5). If the required flow from subdomain � � to subdo-
main � & is � ��& , a vertex � with weight � �t� ( m¨� ) is accepted for migration from � � to � & (with weights � � � �
and � �'&0� ) if

(a) |
�3��&@m�� �t�
or (b) � �'&0��X8� ����Mhi (1)

These criteria are taken from our serial optimisation algorithm, [33], and reflect the aim of trying to balance
the graph down to the target weight, i , and then keeping it there. Migration is thus accepted if (1a) it
reduces the required flow or (1b) does not drive the imbalance above the target weight (although unlike the
serial algorithm this cannot be guaranteed – see below � 3.5.3).

When a vertex is accepted for migration, the gains of its neighbours, together with the flow and subdomain
weight are modified as if the vertex had actually migrated (although global consistency is not maintained –
see � 3.5.3). For example, if � � � �)� |0´ , � � & �)� z�µ

& � ��& � ´ , then if vertex � ( with weight � � ( �n�¨| is accepted
for migration from � � to � & these values would be modified to � � � ���¶| z , � � & ��� z�·

& � ��& � z
. Further

acceptance for migration from � � to � & of another vertex � * with weight � � * ���Z| would then modify them
to � � � �,� z�¸

, � � & �,�8|
� & � ��& � � z or alternatively � &�� � z
.

3.5.2 Migration confirmation and hill-climbing

The algorithm uses a KL type hill-climbing strategy although it has only a limited effect because the inter-
face regions are generally long and thin. As can be seen from (1) migrations can be accepted even if they
increase the partition cost (i.e. have negative gain). As the interface optimiser runs, a record of the optimal
partition of the interface achieved so far is maintained together with a list of vertices which have been ac-
cepted for migration since that value was attained. If subsequent migration finds a ‘better’ partition then
the migration is confirmed and the list is reset. Once the interface optimisation has terminated, only those
vertices whose migration has been confirmed are actually marked for migration in the bulk migration step.

To define a ‘better’ partition, let � represent the optimal partition of the interface found so far and ��¹ the
subsequent partition after some iterations of the interface optimiser. Each partition has a cost associated
with it, º � � � , (in this case just the total weight of cut edges across the interface), a flow � � � � � j!kYl � � ��& � � &r� �
and an imbalance which depends on ¤ � � � , the weight of the largest subdomain involved in the interface,¤ � � � � j!k
l � � � � � � � � & � ). Again let i represent the target weight for the graph (see � 2.5). Denoting º � �»¹ � ,� � �3¹ � & ¤ � �3¹ � by º#¹ , �#¹ & ¤Z¹ respectively (and similarly for � ) then ��¹ is confirmed as a new optimal
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partition if:

(a) ¤Z¹�MEi and º#¹ « º
or (b) ¤Z¹»M2i and º#¹p� º and ¤Z¹ « ¤
or (c) i « ¤�¹ and ��¹ « � (2)

Condition (2c) simply states that, while the graph is unbalanced (i.e. ¤A¹»m2i ), any partition which reduces
the flow is confirmed. Conditions (2a) & (2b) are more typical of KL type algorithms and confirm any
partition which either improves on the optimal cost (2a) or improves on the optimal balance without raising
the cost (2b).

3.5.3 Implementation issues

Sp

Sr

Sq Sp

Sr

Sq

(a) (b)

Figure 5: The normal halo (a) for subdomain � � and (b) extended for the interface algorithm.

A number of issues arise in the parallel implementation of this algorithm:s Extension of halos. In order to properly maintain the gains of halo vertices during the execution of
the interface optimiser, a processor C needs to know about edges between halo vertices (i.e. if a vertex
is accepted for migration then its neighbours’ gains must be updated). These edges are not needed
for the other two approaches (alternating and relative gain), nor for the parallel graph coarsening and
this imposes an additional communication cost on the method. Figure 5(a) shows the halo normally
available and 5(b) the extended halo required for this algorithm.s Additional communications. The need for a processor C handling the optimisation of the interface ²:��&
to inform processor a of the results of that optimisation (prior to the bulk migration step in Figure 2)
adds an additional communication step. On the other hand, during the halo update, processor C does
not need to update the halo ^ ��& on processor a as processor a will not be requiring that information.s Data consistency. For the interface ²¼��& , the subdomain weights, � ���/� and � �3&,� used in (1) and in de-
termining ¤ and ¤�¹ for (2), are those set at the beginning of an outer iteration modified by any
vertices accepted for migration. Unfortunately, there are multiple independent interface problems be-
ing solved simultaneously and so these values are not globally consistent. For this reason, unlike the
serial version, the algorithm cannot guarantee that global imbalance will remain within the imbalance
tolerance once the balance target has been attained. A possible modification would be to introduce a
local tolerance i into (1) & (2), for example by distributing the tolerance around a subdomain’s faces,
but this has not been tested and in practice the algorithm almost always achieve the desired target
balance.
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3.6 Alternating optimisation

The basis of the alternating optimisation approach, independently suggested by Karypis & Kumar, [23],
and Walshaw et al., [36], can be seen as a restriction of the interface optimisation algorithm above. The
strategy is to only allow vertices to migrate in one direction across any interface during a given iteration
of the outer loop – see Figure 4(c). Thus for an interface, ²®��& , if the chosen direction is from ��� to �3& then
vertices are only allowed to migrate from the face ^B��& of subdomain � � to subdomain �p& ; in the following
outer iteration the direction is reversed. The decision of which face to choose is carried out with a crude
scheduling algorithm similar to that given above.

Our implementation of the algorithm is almost identical to the interface algorithm described above with
a few simplifications. Firstly, each processor C can deal with all of its active faces (those faces from which
migration is allowed) in one go and thus inserts all the border vertices from the active faces into a single
bucket tree. The processor then visits the vertices in order of highest gain (by always picking vertices out
of the highest ranked bucket) and a vertex � with preference pref

� � � ��a is then marked for migration if

(a) |
� ��& m�� �t�
or (b) � � & ��X8� ����Mhi (3)

where i is the target weight for the graph (see � 2.5) and ����& is the required flow from subdomain ��� to
subdomain � & (exactly as in (1) – see � 3.5.1). All visited vertices are removed from the bucket tree and, if
accepted for migration, the flow � ��& and subdomain weights are adjusted and their unvisited neighbours
have their gains updated as if the migration had taken place and are repositioned in the bucket tree. This
retention of the bucket sort is an important feature of the algorithm since once a vertex is accepted for
migration, its neighbours are likely to have higher gains.

This inner loop on each processor terminates when either the bucket tree is empty or when:

(a) all vertices with non-negative gain have been visited
and (b) all outgoing flow requirements have been satisfied (4)

3.6.1 Comparison with other methods

The alternating algorithm is simpler to implement than the full interface algorithm because it does not
require the extension of halos nor the additional communication step (see � 3.5.3). The problem of global
consistency of data still arises as before though.

Our version of the alternating algorithm differs from that of Karypis & Kumar, [23], in three respects:–s We incorporate balancing flow directly into the algorithm.s More importantly, a certain amount of tolerated imbalance is crucial for the algorithm to operate
and so the use of the multilevel balancing schedule (see � 2.5) considerably enhances the algorithm
(see also the results in � 5.3). Thus, if no imbalance is allowed then i , the target weight, is just the
optimal subdomain weight � �½GI� � � �Y	BJ . Once the graph is balanced then ����&[�A� everywhere (i.e.
no balancing flow is required) and at least one and possibly all subdomains will realise the optimal
weight, � � �4�0� �N�vi . For all such subdomains, neither of the migration acceptance conditions (3a) &
(3b) can ever be satisfied and hence the optimisation will be severely, if not totally, limited.s As with the other two algorithms presented here, vertex migration is actually realised, rather than
being virtual (see � 1.3) and we believe this enhances the performance of the algorithm.
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3.7 Relative gain optimisation

The third algorithm is a somewhat different approach which has already been described in [36] but which
we summarise here. Rather than using an algorithm running on the entire interface or on alternating faces,
the concept is to think of gain as a force or potential field. From this we can calculate the relative gain on
each border vertex and use this as a mechanism to avoid collisions. Figure 4(d) illustrates this; the relative
gain of each vertex is shown and it can be seen that on each interface, the vertices with the largest relative
gain which are the vertices most likely to migrate do not lie directly opposite each other. The algorithm
is not as predictable as interface optimisation or the alternating scheme mentioned above, which can both
predict exactly the improvement in cost for a bi-partition and fairly accurately for a multiway partition.
However, although the relative gain gives no more than an indication of which vertices to move, in practice
it works very effectively and collisions are rare.

As before the method uses the outer iterative loop shown in Figure 2. For each outer iteration, the opti-
misation algorithm is run concurrently by every processor C which estimates the load it wishes to migrate
from every face ^ ��& , visits all its own border vertices calculating their relative gain and finally marks an
appropriate weight of vertices for migration prioritised by that relative gain. The outer loop then continues
with the parallel bulk migration.

3.7.1 Load to be transferred

The vertex weight to be transferred by any processor C from each of its faces ^B��& to neighbour �'& is given
by a simple formula based on both the flow and the total weight of vertices with positive gain. Firstly
let £ ��& be the total weight of vertices in ^ ��& with gain m¾� (and similarly for ^ &�� and £ &�� ). Then if ¿h�j!kYl � £ ��& �©À ��& X`£ &r� �`À &�� � � � , the load to be migrated from � � to each neighbour � & , is set to Á ��& � À ��& X�¿ � | .

To motivate this formula a little consider the following. First of all, the amount of load to be migrated,Á0��& , is decided by satisfying any required flow, À ��& , and we assume that this takes place by migrating
vertices with the highest positive gain. Thus, after the flow has been satisfied the amount of vertices with
positive gain is approximately given by  ��& �¦£ ��& �.À ��& X2£ &�� �2À &r� . It could be argued that this will be
an underestimate if À ��& m.£ ��& , but in this case the scheme is cautious rather than reckless. At this point we
wish, in a similar manner to the KL algorithm to swap vertices so that none with a positive gain remain.
After some experimentation we have found that simply moving  ��& � | from � � to � & and vice-versa, ensures
fast and effective optimisation provided the vertices are chosen carefully.

3.7.2 Relative gain

The relative gain is determined as follows; for a vertex � in the face ^B��& , let Âp& � � � be the set of vertices in^ &�� adjacent to � , i.e. Â & � � � �Zo:U©+1^ &�� D
U1Ã��/q . The relative gain of a vertex � is then defined as

gain
� � � a � � 5vÄ)Å¼Æ 7¼Ç gain � U � C ���¬ Â & � � � 

(where
��¬ Â�& � � �  represents the number of vertices in Â�& � � � ). Put more simply, the relative gain of a vertex� is just the gain of � less the average gain of opposing vertices, and gives an indication of which are the

best vertices to move in order to avoid collisions. For example, in Figure 1 vertex � has a gain of 2 and 3
opposing vertices in ^ � ¡ with total gain

� � z � � � z � � �@È and so � has a relative gain of | � � �@È � ´ � �v¯ � ´,´ .
Thus to prioritise the migration, for each subdomain � � , vertices in each border ^ ��& are sorted by relative
gain, largest first, and a weight of Á ��& is migrated to � & according to this ordering. The sorting carried
out need not be a full sort since it is only necessary to determine the level of relative gain below which no
vertices will be moved and we have implemented a simple set-based sort on this basis.
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4 Parallel implementation

The software tool written at Greenwich to implement the optimisation techniques is known as JOSTLE and
is freely available for academic and research purposes under a licensing agreement1. It is written in C for
distributed memory parallel computers with communications performed with the Message Passing Inter-
face library MPI (although of course it will also run efficiently on shared memory architectures where MPI
is installed). We work in the owner-computes single-program multiple-data paradigm so that the vertices
in each subdomain, � � , are assigned to processor C , which also holds a one deep halo or read only copy
of vertices adjacent to � � . We classify parallel operations as local, neighbourhood or global; local opera-
tions take place entirely on processor, neighbourhood operations involve communication with processors
neighbouring in the subdomain graph and global operations involve all of the processor communicating
together. Here we employ three communication operations – global reduction, halo updates and vertex
migration. Reduction is a global operation on scalars (or short vectors) such as finding a maximum across
all the processors. Halo updating is a neighbourhood operation and involves each processor, C , informing
its neighbours of certain values assigned to its border vertices, ^?� .

v1 v2 v4 v5

v3
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v1 v2 v4 v5
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Figure 6: An example of vertex migration.

Vertex migration, the transfer of vertices from one distributed memory processor to another, is also a neigh-
bourhood operation and is a non-trivial task to implement efficiently, [14], particularly matching up the
pointer lists of vertices & edges and ensuring consistency of halo information across the parallel system.
Space limitations prevent a full description but we give an overview of the technique which has been im-
plemented as a procedure with two communication subphases. In the first, vertices marked for migration
are packed into buffers together with any additional vertices and edges required to complete the halo on
the destination processor and not already known to exist there. Consider for example the graph shown in
Figure 6. If vertex �0* migrates from �/� to �'& then a copy of vertex �)( must also be sent to complete the
halo on a , but a copy of � \ need not be sent because it already exists in the halo of ��& . Vertices which are
migrating also initiate messages to neighbouring processors which are not their destination – e.g. if ��É mi-
grates to � ¡ then processor C must be informed of this move. Having sent all such messages each processor
unpacks the corresponding received messages and creates the new vertices and edges as instructed. The
second communication phase is required (unfortunately) to fully update the ownership of halo vertices. In
the example, when �
É migrates to � ¡ it takes a copy of � * with it as a halo vertex. However, in the meantime� * has migrated to � & and so a must send another message to

¢
to update this information. Finally halo

vertices which are no longer required are deleted – e.g. prior to the migration �nÊ is a halo vertex of � & ,
afterwards it is not required.

Note that, since each vertex is identified with a unique global index, both halo updates and vertex migration
require some scheme for each processor to find local copy of a vertex. A global array of pointers (of length
V) would render the memory unscalable, so we use an array of binary tree structures which can be rapidly
searched. Thus, given a global index, a processor can locate the appropriate binary tree (using a modulus
function on the global index) and search it for a pointer to the vertex. The use of such binary trees means
that pointers to vertices can be easily added or deleted as migration occurs; the use of an array of them

1available from http://www.gre.ac.uk/jostle
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means that none of the trees should become too deep.

5 Results

The algorithms have been tested on a Cray T3E-900/512 at the University of Stuttgart. For each test the
mesh is read in parallel and distributed contiguously to the processors (i.e. processor 0 is given the first� � � �Y	 vertices, processor 1 the next � � � �
	 , etc.). This means the initial partition can be of extremely poor
quality (although see � 5.4 for results on the impact of the initial distribution). The algorithm is allowed a
5% final imbalance tolerance (set at run-time by the user); i.e. in the notation of � 2.5, u)�B� z0� �,�

mesh Ë ÌbË Ë ÍbË mesh type
4elt 15606 45878 2D nodal graph
t60k-nodal 30570 90575 2D nodal graph
t60k-dual 60005 89440 2D dual graph
dime20 224843 336024 2D dual graph
t60k-full 90575 360030 2D full graph
fe-rotor 99617 662431 3D nodal graph
598a 110971 741934 3D nodal graph
mesh100 103081 200976 3D dual graph
cyl3 232362 457853 3D dual graph
fe-ocean 143437 409593 3D semi-structured graph

Table 1: Test meshes.

The test meshes have been chosen to be a representative sample of medium to large scale real-life problems
and include both 2D and 3D examples of nodal graphs (where the mesh nodes are partitioned) and dual
graphs (where the mesh elements are partitioned). Table 1 gives a list of the meshes and their sizes; since
none of the graphs are weighted the number of vertices in

�
is the same as the total vertex weight � � � and

similarly for the edges
�

. Note that t60k-full is a combination of the t60k nodal graph and t60k dual graph,
with the addition of edges between vertices from t60k-dual which represent mesh elements and the vertices
from t60k-nodal which represent their nodes.Î©Ï�ÐIÑ Î_Ï1Ò¼Ó Î©Ï`Ñ{Ô Î©ÏVÐIÓ¼Õ

mesh Ö�× Ø�× Ö�× Ø�× Ö�× Ø�× Ö�× Ø�×
4elt 1070 0.49 1676 0.67 2728 0.84 4324 1.13
t60k-nodal 1753 0.87 2930 0.82 4378 0.79 6592 1.34
t60k-dual 925 0.54 1573 0.52 2381 0.70 3525 1.31
dime20 1305 1.49 2256 1.17 3632 1.26 5374 1.97
t60k-full 5190 3.46 7931 3.33 12118 2.87 18200 3.20
fe-rotor 22789 8.36 36345 7.20 50580 6.58 70933 8.04
598a 27009 17.17 42172 12.63 59866 10.38 82292 10.54
mesh100 4662 2.85 6795 2.41 9993 2.61 13929 3.70
cyl3 9976 12.32 14639 7.98 20211 6.34 27628 6.77
fe-ocean 8546 6.52 14192 4.62 21845 3.60 31420 4.29

Table 2: The results of the interface algorithm showing the cut-weight º and parallel run-time in secondsÙIÚ
.

The results of the parallel multilevel partitioning using the interface optimisation algorithm from � 3.5 are
shown in Table 2 for four values of

	
(the number of processors/subdomains). The table shows the total

weight of cut edges or cut-weight, º (denoted ºbÛ for the Interface algorithm), and the run-time in seconds,Ù Û (denoted similarly).

We do not show the final imbalance in the partition, but on average it was 1.047. Whilst it never exceeded
the allowed imbalance of 1.05, this is relatively high and demonstrates how effectively the tolerance part of
the algorithm uses any imbalance it is allowed (this was also noted in [33]).
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In the following sections we compare the results with the two other optimisation algorithms and with a
similar parallel multilevel mesh partitioner.

5.1 Comparison with alternating optimisationÎ`Ï�ÐIÑ Î_Ï1Ò¼Ó Î©Ï`Ñ{Ô Î©ÏVÐIÓ¼Õ
mesh Ö�Ü Ö�Ü3Ý¼Ö × Ö�Ü Ö�Ü'Ý¼Ö × Ö�Ü Ö�Ü3Ý¼Ö × Ö�Ü Ö�Ü3Ý¼Ö ×
4elt 1187 1.11 1794 1.07 2933 1.08 4542 1.05
t60k-nodal 1997 1.14 3161 1.08 4742 1.08 7036 1.07
t60k-dual 1021 1.10 1673 1.06 2534 1.06 3682 1.04
dime20 1441 1.10 2436 1.08 3781 1.04 5646 1.05
t60k-full 5846 1.13 8521 1.07 12989 1.07 19104 1.05
fe-rotor 24823 1.09 36571 1.01 52188 1.03 72802 1.03
598a 28101 1.04 43596 1.03 61381 1.03 83883 1.02
mesh100 4528 0.97 7274 1.07 10634 1.06 14633 1.05
cyl3 10622 1.06 15388 1.05 21322 1.05 28640 1.04
fe-ocean 10269 1.20 15792 1.11 25008 1.14 34119 1.09
Average 1.10 1.06 1.07 1.05

Table 3: A comparison of cut-weight results for alternating (A) & interface (I) optimisation.

Table 3 shows a comparison of the cut-weight º between alternating (A) & interface (I) optimisation. For
each value of

	
, the first column shows the value of º for alternating optimisation, º@Þ , while the second

column shows the ratio of º for alternating optimisation over that for interface optimisation, ºBÞ � ºßÛ . The
value 1.11 (4elt,

	 � z�µ
) means that alternating optimisation resulted in a cut-weight 1.11 times as large (or

11% larger) than that of interface optimisation. As can be seen, with one exception (mesh100,
	 � z:µ

), the
results for alternating optimisation are always worse and can be up to 20% larger (fe-ocean,

	 � z�µ
). The

average difference in the quality ranges between 10% and 5% over the different values of
	

with an overall
average of 6.8% depreciation in quality. Although this does not demonstrate a dramatic improvement for
the interface optimisation, if, as is commonly assumed, the parallel communications overhead in the un-
derlying solver is related to the cut-weight, this could have a significant effect on the total parallel runtime
(particularly for a static partition employed over many iterations).

The average final imbalance was 1.011 (with a maximum of 1.032). Once again this does not exceed the
imbalance tolerance of 1.05 and is considerably better than the interface optimisation algorithm.Î©ÏVÐIÑ Î©Ï1Ò¼Ó Î`Ï1Ñ{Ô Î©ÏVÐIÓ¼Õ

mesh Ø Ü Ø Ü Ý�Ø�× Ø Ü Ø Ü Ý�Ø�× Ø Ü Ø Ü Ý�Ø�× Ø Ü Ø Ü Ý�Ø�×
4elt 0.44 0.90 0.56 0.84 0.77 0.92 1.04 0.92
t60k-nodal 0.84 0.97 0.75 0.91 0.73 0.92 1.24 0.93
t60k-dual 0.50 0.93 0.48 0.92 0.66 0.94 1.21 0.92
dime20 1.44 0.97 1.20 1.03 1.14 0.90 1.67 0.85
t60k-full 3.20 0.92 3.23 0.97 2.62 0.91 2.93 0.92
fe-rotor 7.61 0.91 6.27 0.87 5.07 0.77 6.85 0.85
598a 16.51 0.96 11.57 0.92 8.95 0.86 9.39 0.89
mesh100 2.62 0.92 2.38 0.99 2.23 0.85 3.26 0.88
cyl3 11.98 0.97 7.68 0.96 5.92 0.93 6.14 0.91
fe-ocean 5.95 0.91 4.32 0.94 3.06 0.85 3.52 0.82
Average 0.94 0.93 0.89 0.89

Table 4: A comparison of parallel timing results for alternating (A) & interface (I) optimisation.

Table 4 meanwhile shows a comparison in the same format of the parallel timing results
Ù

for alternating &
interface optimisation. Here we can see that alternating optimisation is almost always faster than interface
optimisation (up to 23% faster (fe-rotor,

	 � µ ¯ ) with the average improvement in speed ranging between
6% to 11% over the different values of

	
and an overall average of 8.9%. However, although the partitioner

should be ideally as fast as possible, this variation in partitioning time would generally be insignificant for
most solvers which may run for several minutes or even hours (once again, especially for a static partition).
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5.2 Comparison with relative gain optimisationÎ`Ï�ÐIÑ Î_Ï1Ò¼Ó Î©Ï`Ñ{Ô Î©ÏVÐIÓ¼Õ
mesh Ötà Ötà3Ý¼Ö�× Ötà Ötà3Ý¼Ö�× Ötà ÖtàtÝ¼Ö�× Ötà ÖtàtÝ¼Ö�×
4elt 1147 1.07 1922 1.15 2991 1.10 4730 1.09
t60k-nodal 1872 1.07 3096 1.06 4768 1.09 7163 1.09
t60k-dual 1037 1.12 1651 1.05 2516 1.06 3787 1.07
dime20 1372 1.05 2454 1.09 3896 1.07 5799 1.08
t60k-full 5445 1.05 8304 1.05 12907 1.07 19233 1.06
fe-rotor 23655 1.04 38460 1.06 52951 1.05 75898 1.07
598a 28738 1.06 42300 1.00 62240 1.04 85913 1.04
mesh100 4615 0.99 7459 1.10 11422 1.14 15637 1.12
cyl3 10959 1.10 15692 1.07 21919 1.08 30082 1.09
fe-ocean 10653 1.25 16849 1.19 25445 1.16 36391 1.16
Average 1.08 1.08 1.09 1.09

Table 5: A comparison of cut-weight results for relative gain (R) & interface (I) optimisation.

The cut-weight figures for relative gain optimisation are shown in Table 5 and compared with interface
optimisation as before. Once again, with the same exception (mesh100,

	 � z�µ
), the results for relative gain

optimisation are always worse and can be up to 25% larger (fe-ocean,
	 � z�µ

) with an overall depreciation
of 8.3%. The average final imbalance was 1.002 (with a maximum of 1.008); this is considerably better than
both the interface and alternating optimisation algorithms. We do not show the timing comparison but
relative gain optimisation was on average 7% faster than interface optimisation.

5.2.1 A hybrid algorithm

During development work on these algorithms it was noticed that both alternating & relative gain optimi-
sation tend to converge to a good solution very rapidly (usually in less than 10 iterations) but then have
difficulty in resolving one or more small areas of the partition and ended up cyclically swapping a few
vertices backwards and forwards between subdomains. It is for this reason that the termination criteria of� 3.4.1 were included. Interface optimisation, on the other hand, converges even more rapidly (although at
greater cost per iteration). Î`Ï�ÐIÑ Î_Ï1Ò¼Ó Î©Ï`Ñ{Ô Î©ÏVÐIÓ¼Õ

mesh Ötà4á4× Ötàâá4×®Ý¼Ö�× Ötà4áâ× Ötà4á4×�Ý¼Ö�× Ötàâá4× Ötà4áâ×®Ý¼Ö�× Ötà4á4× Ötàâá4×®Ý¼Ö�×
4elt 1093 1.02 1774 1.06 2870 1.05 4450 1.03
t60k-nodal 1875 1.07 2887 0.99 4537 1.04 6786 1.03
t60k-dual 964 1.04 1610 1.02 2396 1.01 3609 1.02
dime20 1255 0.96 2315 1.03 3688 1.02 5493 1.02
t60k-full 5037 0.97 8090 1.02 12271 1.01 18580 1.02
fe-rotor 23921 1.05 36593 1.01 51432 1.02 73477 1.04
598a 27810 1.03 41187 0.98 60080 1.00 83294 1.01
mesh100 4456 0.96 7113 1.05 10219 1.02 14473 1.04
cyl3 10137 1.02 14456 0.99 20381 1.01 27557 1.00
fe-ocean 9688 1.13 15477 1.09 23951 1.10 33688 1.07
Average 1.03 1.02 1.03 1.03

Table 6: A comparison of cut-weight results for the hybrid relative gain/interface (R X I) & interface (I)
optimisation.

This prompted the idea of a hybrid approach, using either alternating or (as here) relative gain optimisation
and once the cyclic behaviour appears (when the global cost starts to oscillate) to carry out an iteration
using the interface optimiser to resolve the areas where cycling is occurring. This strategy turned out to
be very effective; denoting the cut-weight for this hybrid algorithm º±ãtP Û (for relative plus interface), the
results are shown in Table 6 and compared with interface optimisation as before. Here we see that the
hybrid algorithm is often better than interface optimisation although on average about 2.5% worse. We do
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not show the timings here, but they were broadly similar with the hybrid algorithm just marginally better
(about 0.4% on average). Generally though, the hybrid algorithm is slightly faster for large numbers of
processors (7% on average for

	 � z | · ) and slower for smaller numbers (4% on average for
	 � z�µ

). More
interestingly, the hybrid algorithm had an average imbalance of just 1.007, because of the ability of relative
gain optimisation to remove almost all imbalance.

5.3 Comparison with ParMETISÎ©ÏVÐIÑ Î©Ï1Ò¼Ó Î©Ï1Ñ{Ô Î©ÏVÐIÓ¼Õ
mesh Ötä Ötä�Ý¼Ö × Ötä Ötä[Ý¼Ö × Ötä Ötä[Ý¼Ö × Ötä Ötä[Ý¼Ö ×
4elt 1184 1.11 1832 1.09 2940 1.08 4631 1.07
t60k-nodal 1948 1.11 3109 1.06 4738 1.08 7124 1.08
t60k-dual 968 1.05 1706 1.08 2481 1.04 3773 1.07
dime20 1474 1.13 2339 1.04 3668 1.01 5704 1.06
t60k-full 5364 1.03 8657 1.09 13353 1.10 19960 1.10
fe-rotor 23284 1.02 37324 1.03 52577 1.04 74484 1.05
598a 30440 1.13 44059 1.04 63460 1.06 86841 1.06
mesh100 5133 1.10 7745 1.14 11067 1.11 15261 1.10
cyl3 11542 1.16 15964 1.09 22168 1.10 29677 1.07
fe-ocean 12692 1.49 20252 1.43 27580 1.26 37843 1.20
Average 1.13 1.11 1.09 1.09

Table 7: A comparison of cut-weight results for ParMETIS & interface (I) optimisation.

We have also checked the results against another state-of-the-art parallel partitioner ParMETIS, [23]. As
discussed in � 1.3 & � 3.6.1, ParMETIS is a multilevel partitioner using an alternating optimisation algorithm,
although without the addition of a multilevel balancing schedule and with virtual migration rather than
realised migration. The cut-weight figures for ParMETIS, º±å , are shown in Table 7 and compared with
the interface optimisation as previously. As can be seen, without exception, the results for ParMETIS are
always worse than the interface algorithm and can be 49% larger (fe-ocean,

	 � z�µ
), although it seems to

perform particularly badly on this mesh. The average difference in the quality ranges between 13% and 9%
over the different values of

	
. It is difficult to say exactly what the cause of this difference is but we believe

that the virtual migration does hinder the optimisation slightly, particularly for vertices adjacent to more
than one subdomain. Î©ÏVÐIÑ Î©Ï1Ò¼Ó Î©Ï`Ñ{Ô Î©Ï�ÐIÓ¼Õ

mesh Ø ä Ø ä Ý�Ø�× Ø ä Ø ä Ý�Ø�× Ø ä Ø ä Ý�Ø�× Ø ä Ø ä Ý�Ø�×
4elt 0.25 0.51 0.39 0.58 0.46 0.55 0.54 0.48
t60k-nodal 0.33 0.38 0.42 0.51 0.51 0.65 0.67 0.50
t60k-dual 0.24 0.44 0.27 0.52 0.40 0.57 0.63 0.48
dime20 0.45 0.30 0.39 0.33 0.48 0.38 0.72 0.37
t60k-full 0.68 0.20 0.74 0.22 0.88 0.31 1.09 0.34
fe-rotor 1.15 0.14 1.08 0.15 1.37 0.21 2.54 0.32
598a 1.97 0.11 1.61 0.13 1.79 0.17 2.57 0.24
mesh100 0.78 0.27 0.86 0.36 1.09 0.42 1.52 0.41
cyl3 2.02 0.16 1.72 0.22 2.13 0.34 3.37 0.50
fe-ocean 0.71 0.11 0.71 0.15 0.69 0.19 0.73 0.17
Average 0.26 0.32 0.38 0.38

Table 8: A comparison of parallel timing results for ParMETIS & interface (I) optimisation.

On the other hand the use of virtual migration, without the need to possibly remap large amounts of the
graph does mean that ParMETIS has faster execution time than JOSTLE. This is particularly true when the
initial distribution of the data is poor (see � 5.4) but not so relevant when this is not the case (for example
in dynamic repartitioning, [36]). Table 8 shows this in a comparison of the parallel timing results. Here we
see that ParMETIS is always faster than JOSTLE, on average taking 33% of the time to partition (i.e. in other
words it is about 3 times faster on average). However, the difference is more marked for the mesh cyl3
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which can be seen in � 5.4 to have a very poor initial distribution and less marked for the mesh t60k-nodal
which, because of the way the vertices are numbered, has a good initial distribution.

In summary these results demonstrate an optimisation rule of thumb, that the longer an algorithm takes
to optimise the better the results it gets. Assuming that the parallel overhead in the solver is related to the
cut-weight, the question must then be asked whether the gain in runtime from having a better partition out-
weighs the additional cost in partitioning time. This is obviously very machine and application dependent,
but we would remark that the partitioning times are very small, always less than 20 seconds which in our
experience is insignificant compared with the runtime of a typical parallel unstructured mesh application.

The average imbalance for ParMETIS was 1.032 and occasionally it exceeded the allowed imbalance of 1.05
(dime20,

	 � µ ¯ , imbalance � z,� � ¸ È ; 4elt,
	 � z | · , imbalance � z,� � µ0µ ; fe-rotor,

	 � z | · , imbalance� z,� �)�
´ ). As an experiment we tried adjusting the ParMETIS imbalance tolerance to 1% ( u � � z,� � z )2 to
compare with the high quality load-balance figures of the hybrid algorithm (an average imbalance of just
1.007). As expected, because of the trade-off between load-balance and partition quality, this made the cut-
weight results worse (14.5% worse than the interface algorithm and 11.6% worse than the hybrid algorithm
on average), however ParMETIS was unable to achieve the desired balance and gave an average imbalance
in the results of 1.030.

5.4 The impact of the initial distribution

initial
Î©ÏVÐIÑ Î©Ï`Ò¼Ó Î`Ï1Ñ{Ô Î_Ï�ÐIÓ¼Õ

mesh distrib. Ö�æ Ö Ø Ö�æ Ö Ø Ö�æ Ö Ø Ö�æ Ö Ø
t60k-nodal cyclic 86929 1821 2.08 88210 2863 1.51 89586 4476 1.45 90521 6595 2.30
t60k-nodal random 84843 1737 2.06 87722 2863 1.55 89103 4385 1.43 89838 6554 2.39
t60k-nodal block 6639 1753 0.88 7998 2930 0.80 10536 4378 0.80 15457 6592 1.29
t60k-nodal greedy 2248 1758 0.44 3511 2908 0.48 5336 4476 0.61 7752 6608 1.23
cyl3 cyclic 432639 10299 14.71 445449 14796 9.07 451608 20564 6.86 454647 27460 6.83
cyl3 random 429109 10195 14.87 443501 14508 9.33 450678 20606 6.83 454248 27614 7.52
cyl3 block 351188 9976 12.31 375349 14639 7.91 388139 20211 6.34 394861 27628 6.70
cyl3 greedy 20014 10398 3.49 27858 14984 2.93 37442 20911 3.47 48152 27779 5.20

Table 9: Results showing the effect of different initial distributions (with cut-weight º±� ) on the final partition
quality (cut-weight º ) and the parallel partitioning time,

Ù
.

It is of interest to ask what impact does the initial distribution have on the outcome of the final partition.
In Table 9 we compare four different initial distribution schemes for the two example meshes chosen from
the test set in Table 1. The cyclic distribution assigns vertex ç to processor C if ç modulo

	 � C , i.e. vertex
numbers � �S	=� | 	=� ����� are given to processor 0, vertices

z ��	 X z � | 	 X z � �����
to processor 1, etc. The random

distribution assigns them randomly (using the standard C library random number generator drand48
which has a uniform distribution over the unit interval). The block distribution is the one used for all
the previous tests and assigns the first

�%�Y	
vertices to processor 0, etc., while the greedy algorithm is a

(serial) graph-based implementation, [35], of Farhat’s algorithm, [9]. Note that the cyclic, random and
block distributions are all parallel input algorithms in the sense that the mesh can be read in from file in
parallel, while the greedy algorithm requires the execution of a separate serial partitioner. The results show
for each value of

	
the cut-weight of the initial distribution, º � , the cut-weight of the final partition, º and

the partitioning time in seconds.

The results clearly demonstrate two things. Firstly, modulo a certain amount of ‘noise’ (inevitable for dis-
crete optimisation algorithms such as these) with a maximum variation of 4.8% in the final cut-weight, the
quality of the final partition is independent of the quality of the initial distribution. Thus the partitioning
techniques are clearly seen to provide global rather than just local optimisation. Secondly, however, the par-
titioning time is strongly dependent on the initial distribution, with the poorly distributed results taking
much longer to partition.

2by resetting UNBALANCE FRACTION and ORDER UNBALANCE FRACTION in defs.h to 1.01
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Regarding the initial distribution schemes, note that the block distribution can lead to a wide variation in
initial cut-weight dependent on whether the mesh has been numbered with some form of structure (i.e. as
in t60k-nodal, vertices which are close in index have a good chance of being neighbours in the graph) or not
(i.e. as in cyl3, where no such relation appears to exist). Finally note that the cyclic scheme almost always
(and always in Table 9) produces an initial cut-weight worse than the random distribution for precisely the
opposite reason; if such a relation exists in the numbering it is destroyed by placing contiguous vertices on
different processors.

6 Conclusions

We have described three parallel optimisation algorithms for use in the context of parallel multilevel par-
titioning for unstructured meshes. We have compared the results they generate and seen that the interface
optimisation algorithm, � 3.5, the one closest to our serial flow & tolerance algorithm, [33] (and indeed the
original Kernighan-Lin algorithm, [24]) generally produces very high quality partitions, very rapidly and
provides the best results in terms of cut-weight. However, it does not completely remove imbalance in the
final partition and we have shown that a hybrid algorithm, using relative gain with a final clean-up step
of interface optimisation, produces very similar results equally rapidly and removes most of the imbalance.
This suggests that the hybrid approach is an effective solution to the parallel partition optimisation problem
and this is especially true in the light of recent work which suggests that the scalability of a domain decom-
position based solver can be seriously affected by even small imbalances in processor loading, [25, 26]. We
have also compared the algorithms with another state-of-the-art partitioning tool, ParMETIS, and shown
that the results are of higher quality although taking longer to compute. In � 5.4 we have demonstrated the
global quality of the results and that (as expected) the initial distribution strongly affects the partitioning
time.

Much work continues in the field of mesh partitioning, for example to optimise different cost functions, e.g.
[34], and it is of interest to ask how generic are the techniques described here. In the near future we hope to
provide further results using the algorithms to minimise alternative objective functions such as subdomain
aspect ratio or machine mapping (rather than just cut-edge weight).
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