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Abstract

We consider the load-balancing problems which arise from parallel scientific codes containing multiple
computational phases, or loops over subsets of the data, which are separated by global synchronisation
points. We motivate, derive and describe the implementation of an approach which we refer to as the
multiphase mesh partitioning strategy to address such issues. The technique is tested on several examples
of meshes, both real and artificial, containing multiple computational phases and it is demonstrated that
our method can achieve high quality partitions where a standard mesh partitioning approach fails.
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1 Introduction

The need for mesh partitioning arises naturally in many finite element (FE) and finite volume (FV) computa-
tional mechanics (CM) applications. Meshes composed of elements such as triangles or tetrahedra are often
better suited than regularly structured grids for representing completely general geometries and resolving
wide variations in behaviour via variable mesh densities. Meanwhile, the modelling of complex behaviour
patterns means that the problems are often too large to fit onto serial computers, either because of memory
limitations or computational demands, or both. Distributing the mesh across a parallel computer so that
the computational load is evenly balanced and the data locality maximised is known as mesh partitioning.
It is well known that this problem is NP-complete, so in recent years much attention has been focused on
developing suitable heuristics, and some powerful methods, many based on a graph corresponding to the
communication requirements of the mesh, have been devised, e.g. [12].

1.1 Multiphase partitioning – motivation

Typically, the load-balance constraint – that the computational load is evenly balanced – is simply satisfied
by ensuring that each processor has an approximately equal share of the mesh entities (e.g. the mesh ele-
ments, such as triangles or tetrahedra, or the mesh nodes). Even in the case where different mesh entities
require different computational solution time (e.g. boundary nodes and internal nodes) the balancing prob-
lem can still be addressed by weighting the corresponding graph vertices and distributing the graph weight
equally. However, as increasingly complex solution methods are developed, there is a class of solvers for
which such simple models of computational cost break down. Consider the example shown in Figure 1(a)
and the flow diagram for the solution algorithm in Figure 1(b). Suppose we derive a partition for 2 proces-
sors as shown by the dotted line in Figure 1(a) and which might normally be considered of good quality.
As shown in Figure 1(c), however, for this particular solution algorithm, it is a very poor partition because,
during the fluid/flow phase of the calculation, processor 1 has relatively little work to do and indeed dur-
ing the solid/stress phase processor 0 has no work at all. Furthermore, processor 1 is not able to start the
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Figure 1: An example of a multiphysics problem

solid/stress calculation until the fluid/flow part has terminated because of the global convergence check, a
global synchronisation point (when all the processors communicate as a group).

In fact it is these multiple loops over subsets of the mesh entities interspersed by global communi-
cations which characterise this modified mesh partitioning problem. If, for example, all the loops in Fig-
ure 1(b) were over all the mesh entities (as sometimes happens in codes of this nature when variables are set
to zero in regions where a given phenomenon does not occur – e.g. flow in a solid) such balancing problems
would not arise. Similarly, if in Figure 1(b) there were no global convergence checks, so that a processor
could commence on the stress solution immediately after the flow solution had converged locally, the prob-
lem would be removed, although the flow & stress regions might need to be weighted differently. In the
simple example in Figure 1 an obvious (and relatively good) load-balancing strategy, therefore, is simply
to partition each region (i.e. liquid & solid) of the domain separately so that each processor has an equal
number of entities from each region. However, in more complex examples, for example where the regions
relating to different computational phases overlap, this may no longer provide a good solution and a more
advanced strategy is required.

We refer to this modified mesh partitioning problem as the multiphase mesh partitioning problem
(MMPP) because the underlying solver has multiple distinct computational subphases, each of which must
be balanced separately. Typically MMPPs arise from multiphysics or multiphase modelling (e.g. [22, 23])
where different parts of the computational domain exhibit different material properties. They can also arise
in contact-impact modelling, e.g. [20], which usually involves the solution of localised stress-strain finite
element calculations over the entire mesh together with a much more complex contact-impact detection
phase over areas of possible penetration.

1.2 Overview

In this paper we discuss strategies for dealing with MMPPs, primarily by extending existing single-phase
mesh partitioning algorithms. A particularly popular and successful class of algorithms which address
the standard or single-phase mesh partitioning problem are known as multilevel algorithms. They usually
combine a graph contraction algorithm which creates a series of progressively smaller and coarser graphs
together with a local optimisation method which, starting with the coarsest graph, refines the partition at
each graph level. In Section 2 we outline such an algorithm and discuss the salient features. We aim to ad-

2



dress the MMPP by using this multilevel algorithm almost as a ‘black box’ solver, partitioning the problem
phase by phase, based on the partitions of the previous phases. The details of this approach are described
in Section 3, in particular the necessary vertex classification scheme (

�
3.1), an overview of the strategy (

�
3.2)

and modifications to the multilevel algorithm (
�
3.3). Also, note that although we describe a serial version

of the multilevel algorithm, since it is used very much as a ‘black box’ algorithm, the same strategy can
be used to enable parallel solution of the MMPP and in Section 3.4 we discuss a parallel implementation.
Related work is discussed in Section 3.6. In Section 4 we present results for the techniques on a number of
both artificial and genuine (drawn from industrial simulation) MMPPs. Finally, in Section 5 we discuss the
work, present some conclusions and list some suggestions for further research.

The principal innovation described in this paper is the multiphase mesh partitioning strategy, its moti-
vation, derivation and implementation. In addition, other minor innovations described here include:

� an algorithm for dealing with disconnected graph (
�
3.5.1)

� a scheme for handling isolated vertices (
�
3.5.2)

� a strategy for seeding empty subdomains (
�
3.5.3)

2 Multilevel mesh partitioning

In this section we discuss the single-phase mesh partitioning problem (the classical mesh partitioning prob-
lem) and outline our multilevel algorithm, described in [28], for addressing it. The modifications to the
algorithm for use in the multiphase partitioning problem are deferred to

�
3.3 following the discussion of

the multiphase mesh partitioning paradigm.

2.1 Notation and Definitions

Let �������	��
��� be an undirected graph of vertices � , with edges � which represent the data dependencies
in the mesh. The graph vertices can either represent mesh nodes (the nodal graph), mesh elements (the dual
graph), a combination of both (the full or combined graph) or some special purpose representation to model
the data dependencies in the mesh. We assume that both vertices and edges can be weighted (with non-
negative integer values) and that � ��� denotes the weight of a vertex � and similarly for edges and sets of
vertices and edges (although it is often the case that vertices and edges are given unit weights, � ������� for
all ����� and � ������� for all ����� ). Given that the mesh needs to be distributed to � processors, define
a partition  to be a mapping of � into � disjoint subdomains !�" such that #%$�!&"'�(� . The partition  
induces a subdomain graph on � which we shall refer to as ��)����*)��	!+
-,.� ; there is an edge or link �	!/"0
1!�23� in, if there are vertices �546
7�68%�9� with �:�;46
7�68<�=�'� and �;4��9!&" and �68>�9!�2 and the weight of a subdomain
is just the sum of the weights of the vertices in the subdomain, � !�"��?�A@�BDC;EDFG� ��� . We denote the set of
inter-subdomain or cut edges (i.e. edges cut by the partition) by �IH (note that � �=H<���J� ,K� ). Vertices which
have an edge in �KH (i.e. those which are adjacent to vertices in another subdomain) are referred to as border
vertices. Finally, note that we use the words subdomain and processor more or less interchangeably: the
mesh is partitioned into � subdomains; each subdomain !/" is assigned to a processor L and each processorL is assigned a subdomain !/" .

The definition of the graph partitioning problem is to find a partition which evenly balances the load or
vertex weight in each subdomain whilst minimising the communications cost. To evenly balance the load,
the optimal subdomain weight is given by !NMO�QP-� �R� ST�IU (where the ceiling function P:VWU returns the smallest
integer greater than V ) and the imbalance is then defined as the maximum subdomain weight divided by the
optimal (since the computational speed of the underlying application is determined by the most heavily
weighted processor). It is normal practice in graph partitioning to approximate the communications cost
by � � H � , the weight of cut edges or cut-weight and the usual (although not universal) definition of the graph
partitioning problem is therefore to find  such that ! "YX ! and such that � � H � is minimised. Note that
perfect balance is not always possible for graphs with non-unitary vertex weights.
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2.2 The multilevel paradigm

In recent years it has been recognised that an effective way of both speeding up mesh partitioning tech-
niques and/or, perhaps more importantly, giving them a global perspective is to use multilevel techniques.
The idea is to match pairs of vertices to form clusters, use the clusters to define a new graph and recur-
sively iterate this procedure until the graph size falls below some threshold. The coarsest graph is then
partitioned (possibly with a crude algorithm) and the partition is successively optimised on all the graphs
starting with the coarsest and ending with the original. This sequence of contraction followed by repeated
expansion/optimisation loops is known as the multilevel paradigm and has been successfully developed
as a strategy for overcoming the localised nature of the Kernighan-Lin (KL), [17], and other optimisation
algorithms. The multilevel idea was first proposed by Barnard & Simon, [2], as a method of speeding up
spectral bisection and improved by both Hendrickson & Leland, [11] and Bui & Jones, [4], who generalised
it to encompass local refinement algorithms. Several algorithms for carrying out the matching have been
devised by Karypis & Kumar, [15], while Walshaw & Cross describe a method for utilising imbalance in the
coarsest graphs to enhance the final partition quality, [28].

Graph contraction. To create a coarser graph �[Z]\ 4 �^��Z]\ 4 
-�GZ]\ 4 � from �_Z7�^��Z`
�aZb� we use a variant of the
edge contraction algorithm proposed by Hendrickson & Leland, [11]. The idea is to find a maximal inde-
pendent subset of graph edges, or a matching of vertices, and then collapse them. The set is independent
if no two edges in the set are incident on the same vertex (so no two edges in the set are adjacent), and
maximal if no more edges can be added to the set without breaking the independence criterion. Having
found such a set, each selected edge is collapsed and the vertices, cd4<
-c/89�e� Z say, at either end of it are
merged to form a new vertex �R�f� Z]\ 4 with weight � ���;�g� c�46�Dhi� c/85� .

A simple way to construct a maximal independent subset of edges is to create a randomly ordered list
of the vertices and visit them in turn, matching each unmatched vertex with an unmatched neighbouring
vertex (or with itself if no unmatched neighbours exist). Matched vertices are removed from the list. If
there are several unmatched neighbours the choice of which to match with can be random, but it has been
shown by Karypis & Kumar, [15], that it can be beneficial to the optimisation to collapse the most heavily
weighted edges and our matching algorithm uses this heuristic.

The initial partition. Having constructed the series of graphs until the number of vertices in the coarsest
graph is smaller than some threshold, the normal practice of the multilevel strategy is to carry out an initial
partition. Here, following the idea of Gupta, [10], we contract until the number of vertices in the coarsest
graph is the same as the number of subdomains, � , and then simply assign vertex j to subdomain !dk . Unlike
Gupta, however, we do not carry out repeated expansion/contraction cycles of the coarsest graphs to find
a well balanced initial partition but instead, since our optimisation algorithm incorporates balancing, we
commence on the expansion/optimisation sequence immediately.

Partition expansion. Having optimised the partition on a graph � Z , the partition must be interpolated
onto its parent � Zml 4 . The interpolation itself is a trivial matter; if a vertex �n�Y� Z is in subdomain !/" then
the matched pair of vertices that it represents, �046
7�68_��� Z:l 4 , will be in !/" .
2.3 The iterative optimisation algorithm

The iterative optimisation algorithm that we use at each graph level is a variant of the Kernighan-Lin (KL)
bisection optimisation algorithm which includes a hill-climbing mechanism to enable it to escape from local
minima. Our implementation uses bucket sorting, the linear time complexity improvement of Fiduccia &
Mattheyses, [8], and is a partition optimisation formulation; in other words it optimises a partition of �
subdomains rather than a bisection. It is fully described in [28].

The algorithm, as is typical for KL type algorithms, has inner and outer iterative loops with the outer
loop terminating when no migration takes place during an inner loop. It uses two bucket sorting structures
or bucket trees and is initialised by calculating the gain – the potential improvement in the cost function (in
this context the cut-weight) – for all border vertices and inserting them into one of the bucket trees. These
vertices are referred to as candidate vertices and the tree containing them as the candidate tree.

The inner loop proceeds by examining candidate vertices, highest gain first (by always picking vertices
from the highest ranked bucket), testing whether the vertex is acceptable for migration and then transfer-
ring it to the other bucket tree (the tree of examined vertices). If the candidate vertex is found acceptable,
it is migrated, its neighbours have their gains updated and those which are not already in the examined

4



tree are relocated in the candidate tree according to this updated gain. This inner loop terminates when the
candidate tree is empty although it may terminate early if the partition cost rises too far above the cost of
the best partition found so far. Once the inner loop has terminated any vertices remaining in the candidate
tree are transferred to the examined tree and finally pointers to the two trees are swapped ready for the
next pass through the inner loop.

The algorithm also uses a KL type hill-climbing strategy; in other words vertex migration from subdo-
main to subdomain can be accepted even if it degrades the partition quality and later, based on the subse-
quent evolution of the partition, either rejected or confirmed. During each pass through the inner loop, a
record of the optimal partition achieved by migration within that loop is maintained together with a list of
vertices which have migrated since that value was attained. If subsequent migration finds a ‘better’ par-
tition then the migration is confirmed and the list is reset. Note that it is possible to find better partitions
despite selecting some vertices with negative gain because, as the optimiser runs, the gains of adjacent ver-
tices will change and so the migration of a group of vertices some or all of which start with negative gain
can in fact decrease the overall cost (i.e. produce a net positive gain). Once the inner loop is terminated, any
vertices remaining in the list (vertices whose migration has not been confirmed) are migrated back to the
subdomains they came from when the optimal cost was attained.

The algorithm, together with conditions for vertex migration acceptance and confirmation is fully de-
scribed in [28].

2.4 Parallel multilevel graph partitioning

The parallel implementation of the multilevel graph partitioning strategy involves a number of fairly com-
plex issues and coding difficulties, [29]. However, the techniques are very similar in outline to the serial
version and for the purposes of this paper, where the multilevel partitioner is used as a ‘black box’ solver,
the description above should give a sufficient overview of the multilevel paradigm. Both parallel and serial
algorithms are implemented in a mesh partitioning tool known as JOSTLE and freely available for academic
and research purposes under a licensing agreement1.

3 Multiphase partitioning

In this section we describe a strategy which addresses the multiphase partitioning problem, the principle
of which is to partition each phase separately, phase by phase, but use the results of the previous phase to
influence the partition of the current one. The partitioner which we use to carry out the partitioning of each
phase is that described in Section 2 with a few minor modifications described in

�
3.3; however, in principle

any partition optimisation algorithm could be used.

3.1 Vertex classification

To talk about multiphase partitioning and more specifically our methods for addressing the problem we
need to first classify the graph vertices according to phase. For certain applications the mesh entities (e.g.
nodes or elements) will each belong to one phase only (see for example Figure 2(a) and also

�
4.1). However

it is quite possible for a mesh entity, and hence the graph vertex representing it, to belong to more than
one phase (see for example the application in

�
4.3, a contact-impact calculation where some mesh elements

are involved in both contact and shell deformation phases). For this reason, if o is the number of phases,
we require for each vertex � that the input graph includes a vector of length o , containing non-negative
integer weights that represent the contribution of that vertex to the computational load in each phase. Thus
if � ��� k represents the contribution of vertex � to phase j then the weight vector for a vertex � is given byp �rqs� ��� 4 
<� ��� 8 
3tut3tv
<� ��� w+x (this is exactly the same as for the multi-constraint paradigm of Karypis & Kumar,
[16] – see below

�
3.6.3). For the example in Figure 2(a) then, the phase 1 mesh nodes would be input

with the vector qy�z
{Tx while the phase 2 nodes would be input with the vector q {W
u�vx (assuming each node
contributes a weight of 1 to their respective phases). We then define the vertex type to be the lowest value

1available from http://www.gre.ac.uk/jostle
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of j for which � ��� k}|�{ , i.e.

type �b�0�~�
�r�>��� j such that � ��� k�|�{ for j����;
3tut3tv
o{ if � ��� kd��{ for j����;
3tut3tv
o?t (1)

Thus in the case when the mesh phases are distinct (e.g. Figure 2) the vertex type is simply the phase of
the mesh entity that it represents; when the mesh entities belong to more than one phase then the vertex
type is the first phase in which its mesh entity is active. Note that it is entirely possible that � ��� k �({ for
all j=���z
ut3t3t3
-o (although this might appear to be unlikely it did in fact occur in the very first tests of the
technique that we tried with a real application – see

�
4.3) and we refer to such vertices as type zero vertices.

For clarification then, a mesh entity can belong to multiple phases, but the graph vertex which represents it
can only be of one type ���i{W
3tut3tv
o , where o is the number of phases.

3.2 Multiphase partitioning strategy

activestationaryactivestationary

phase 1 phase 2

(c) (d)

(a) (b)

Figure 2: Multiphase partitioning of a simple two phase mesh: (a) the two phases; (b) the partition of the
type 1 vertices; (c) the input graph for the type 2 vertices; (d) the same input graph with stationary vertices
condensed

To explain the multiphase partitioning strategy, consider the example mesh shown in Figure 2(a) which
has two phases and which we require to partition into 4 subdomains. The basis of the strategy is to first
partition the type 1 vertices, shown partitioned in Figure 2(b) and then partition the type 2 vertices. How-
ever, we do not simply partition the type 2 vertices independent of the type 1 partition; to enhance data
locality it makes sense to include the partitioned type 1 vertices in the calculation and use the graph shown
in Figure 2(c) as input for the type 2 partitioning. We retain the type 1 partition by requiring that the parti-
tioner may not change the processor assignment of any type 1 vertex. We thus refer to those vertices which
are not allowed to migrate (i.e. those which have already been partitioned in a previous phase) as stationary
vertices. Vertices which belong to the current phase (non stationary ones) are referred to as active.

Vertex condensation. Because a large proportion of the vertices may be ‘stationary’ (i.e. the partitioner
is not allowed to migrate them) it is rather inefficient to include all such vertices in the calculation. For this
reason we condense all stationary vertices assigned to a processor L down to a single stationary super-vertex
as shown in Figure 2(d). This can considerably reduce the size of the input graph.
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Each stationary super-vertex has a weight equal to the sum of weights (over all the condensed stationary
vertices that it represents) for the phase that is being partitioned. Thus if � is a super-vertex representing a
condensed group of stationary vertices, the weight of � for phase j is given by � ��� k � @ BDCz��� ��� k .

Graph edges. Edges between stationary and active vertices are retained to enhance the interphase data
locality, however, as can be seen in Figure 2(d), edges between the condensed stationary vertices are left
out of the input graph.There is a good reason for this; our partitioner includes an integral load-balancing
algorithm (to remove imbalance arising either from an existing partition of the input graph or internally as
part of the multilevel process) which schedules load to be migrated along the edges of the subdomain graph.
If the edges between stationary vertices are left in the input graph, then corresponding edges appear in the
subdomain graph and hence the load-balancer may schedule load to migrate between these subdomains.
However, if these inter subdomain edges arise solely because of the edges between stationary vertices then
there may be no active vertices to realise this scheduled migration and the balancing may fail.

for phase = 1,..,nphases {
for each vertex v {

if type(v) = phase {
include vertex in phase graph

with weight |v|_i
} else if type(v) < phase {

p = partition(v)
condense v into stationary vertex p

adding weight |v|_i
} else {

ignore v
}

}
partition phase graph()

}

Figure 3: The multiphase partitioning algorithm

Summary. Although we have illustrated the multiphase partitioning algorithm with a two phase ex-
ample, the technique can clearly be extended to arbitrary numbers of phases. Figure 3 shows a pseudo-
code description of the algorithm. Here the ‘partition phase graph()’ line is a call to the multilevel
single-phase partitioner and hence we can see that the multiphase mesh partitioning paradigm consists of
a wrapper around a ‘black box’ mesh partitioner. The wrapper is used to construct a series of o subgraphs,
one for each phase and is thus relatively easy to implement.

3.3 Modifications to the multilevel partitioner

The modifications we need to make to the multilevel partitioner are relatively minor and simple to imple-
ment. Consider first of all the optimisation; all that we require is that the condensed stationary vertices do
not migrate and we simply restrict them from doing so by not including them in the bucket sorting so that
they cannot be considered for migration. This in turn leads to the modification for the graph contraction;
since we do not allow stationary vertices to migrate, a cluster consisting of an active vertex matched with
a stationary vertex will be prevented from migrating. Therefore, since we wish the active vertices to have
total freedom to migrate, we do not allow them to match with stationary vertices. Furthermore stationary
vertices are not allowed to match with each other since this would result in a cluster containing vertices in
different subdomains. These modifications are easily achieved within the graph partitioner at each graph
level by just matching each stationary vertex with itself – as if it had no unmatched neighbours – before
any other matching takes place. Finally for the initial partition, the result of the matching graph contraction
means that the coarsest graph consists of � stationary vertices each assigned to one processor and � (or
more) unassigned active vertices. At this point we assign the active vertices with a simple greedy approach
which takes account of gain, the aim being that if an active vertex is adjacent to one or more stationary
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vertices it should be assigned such that the cut-weight is minimised (i.e. assigned to the same processor as
the stationary vertex with which it shares the heaviest edge).

3.4 Parallel issues

The parallel implementation of these techniques is relatively straight forward, if complex to code; once
again, the wrapper around the ‘black box’ multilevel partitioner is simply required to classify the vertices
and construct a subgraph for each phase and this can be done in parallel. One major difference from the
serial version, however, is that to execute in parallel the multiphase partitioner must already have a parti-
tioned graph (because each processor will own a subset of the graph vertices) and the initial distribution
can be very crude, e.g. [29], and bear no relation to the multiple computational phase. Indeed, for a dy-
namic version of the technique (not tested here), where the partitioner may be required to reuse an existing
partition in order to minimise data migration, this issue arises even for the serial multiphase partitioner
and results in extra requirements discussed in the next section.

3.5 Extensions to the multilevel partitioner

In order to function correctly on multiple phase based subgraphs the ‘black box’ multilevel partitioner does
require some additional functionality. In fact, all of the required functionality has been part of the JOSTLE
partitioning tool for some time but we describe it here for the first time.

3.5.1 Disconnected graphs

vertices

type 2

processor 1processor 0

type 1 vertices

Figure 4: A graph with disconnected regions of type 1 vertices

Consider the graph shown in Figure 4 which contains two disconnected regions of type 1 vertices giv-
ing rise to a disconnected type 1 subgraph. Our multilevel partitioning algorithms and, in particular, the
integral load-balancing components rely on vertices only migrating from a given subdomain to one its
neighbours (i.e. to one of the subdomains to which it is adjacent). If, however, the example type 1 subgraph
is initially partitioned as shown, so that subdomain 0 consists of the left hand region and subdomain 1
consists of the right hand region, then neither subdomain has any neighbours and no migration can take
place (and in this case the type 1 subgraph will remain unbalanced). To counteract this (and indeed to deal
with single-phase disconnected graphs) the software contains an optional algorithm for arbitrarily connect-
ing multiple disconnected graph components. Firstly to determine how many such components there are
all vertices are visited with a breadth first search (BFS). The search will need to be restarted once for each
disconnected component (by visiting all the vertices in turn and seeding the restart from the first vertex
which has not been visited during the previous searches). Finally a vertex of minimal degree from each
component is selected and these vertices are connected together with additional edges in a chain. Note
that vertices of minimal degree are chosen since they are more likely to be extremal within their respective
components. Also, although these additional edges are arbitrary and do distort the graph somewhat, in
practice they enable good load-balance and (since disconnected components are only connected by a single
edge), if appropriate, the optimisation often makes intersubdomain cuts between components.
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This feature also works in parallel although in this case some additional work is required after the
initial BFS (for example to establish if two disconnected components owned by a given processor are in fact
connected by vertices owned by neighbouring processors). Thus each processor uses the BFS initially to
visit all the vertices it owns (core vertices) and within each (locally) connected component � , every vertex
in � is marked with the minimum vertex index over all vertices in � . The processors then communicate to
update the markers of their halo vertices (those vertices owned by neighbouring processors) and if any core
vertex belonging to component � is adjacent to a halo vertex with a lower marker all the vertices in � are
updated with this marker. This process of halo updates is then repeated until the markers cease to change
(using a global communication to check whether all processor have reached stability). At this point every
vertex has a marker corresponding to the minimum index over all the vertices to which it is connected and
it is relatively straightforward (using a global communication) to find a vertex of minimal degree for each
component and connect the graph as above.

3.5.2 Isolated vertices

One special case of disconnected graphs arises from isolated vertices or vertices which have no neighbours
(i.e. vertices with zero degree). Although it is not easy to see why such vertices should arise in graphs
representing FE & FV meshes, they can occur within individual phases of our multiphase partitioning
approach (for example a type 1 vertex which only has neighbours of type 2 will be isolated with respect
to the type 1 graph) although for many typical multiphase scenarios (e.g. fluid-structure interaction), they
are unlikely. They are treated separately to the more general case of disconnected subgraphs above,

�
3.5.1,

in that they are removed from each graph altogether before each phase of the partitioning process. If they
are already partitioned (e.g. the parallel algorithms commence with an existing partition of the mesh) then
they remain in their existing subdomains; if not, they are distributed amongst the subdomains on a cyclic
basis. In either case their weight is incorporated into the subdomain weights for load-balancing purposes.

3.5.3 Seeding empty subdomains

verticesvertices

type 1 type 2

processor 1processor 0

Figure 5: A graph with an empty subdomain (for the type 1 vertices)

Consider the graph shown in Figure 5 with one relatively small region of type 1 vertices. If this graph
is initially partitioned as shown, processor 1 will not own any type 1 vertices. As above,

�
3.5.1, since

load flows between neighbouring subdomains, subdomain 1 will therefore remain empty throughout the
partitioning process (since it is not adjacent to any other subdomain) and balancing will fail. To alleviate
this problem, the software includes the ability to seed empty subdomains by migrating a vertex (essentially
picked at random from any subdomain containing more than one vertex) to the empty subdomain. Newly
seeded subdomains are then adjacent to at least one other subdomain (because the graph is forced to be
connected,

�
3.5.1, and contains no isolated vertices,

�
3.5.2) and thus additional load can flow freely into

them. An important feature of the seeding process however is that, by default, it takes place after the
graph contraction process but prior to refinement & load-balancing. Typically then, a graph is contracted
down to � vertices (where � is the number of processors) and any empty subdomains are seeded at this
point, which means that the load-balance is reasonable (depending on how evenly the weight is distributed
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amongst the vertices by the contraction process). This would be unlikely to be true however if the seeding
took place prior to contraction (because the seeded subdomains would only contain one vertex). This
feature, if necessary, can even be used as a mechanism for initially distributing a graph when only one
processor owns all of the vertices, although this does have memory implications since the entire series of
coarse graphs is constructed on one processor.

3.6 Related work

3.6.1 Graph manipulation approaches

Although, as far as we are aware, the techniques described in this paper have not been tried before, they
do resemble in certain respects approaches used to address some other mesh/graph partitioning problems.
In particular, the strategy of modifying the graph and then using standard partitioning techniques has
been successfully employed previously. For example, Walshaw & Berzins, [31] condensed graph vertices
together to form ‘super-vertices’, one per subdomain and then employed the standard recursive spectral
bisection algorithm, [27], in order to prevent excessive data migration for dynamic repartitioning of adap-
tive meshes. In a similar vein, both Hendrickson & Leland, [13], and Pellegrini & Roman, [25], used ad-
ditional graph vertices, essentially representing processors/subdomains in order to enhance data locality
when mapping onto parallel machines with non-uniform interconnection architectures (e.g. a grid of pro-
cessors or a meta-computer). The multiphase partitioning strategy is another in this broad class of graph
manipulation approaches.

3.6.2 Contact-impact simulations

One of the particular areas of interest driving the development of multiphase partitioning algorithms has
been the use of contact-impact algorithms (for example in the automotive industry for simulating crashes,
e.g. [5]). Typically the simulation will involve localised stress-strain finite element calculations over the
entire mesh together with a much more complex contact-impact detection phase over the localised areas of
possible penetration, [20]. It is usually the imbalance introduced during this contact phase which is respon-
sible for serious deterioration in the overall scalability of the code and several approaches to overcome it
have been tried.

Vertex weighting. One strategy arising from crashworthiness simulations and designed by Clincke-
maillie, Lonsdale et al., [5, 20], to address this problem, is to use a static partition of the mesh but to add
contact-related weights to the partitioning cost function for vertices that are part of a contact surface. Al-
though this approach does not directly address the two-phase nature of the problem, a significant improve-
ment was reported over the version which simply partitioned the stress-strain mesh.

Overpartitioning. Another technique arising from crashworthiness simulations and again involving a
static partition of the mesh, is that employed by Galbas & Kolp, [9], and known as overpartitioning. In
this approach the mesh is split into many more subdomains than there are processors (typically 4 or 8
times as many) with the aim that parts of the mesh that will be involved in contact are split into sufficient
numbers of subdomains to achieve balance. Dynamic load-balance is attained by (re)assigning subdomains
to processors such that the each processor has an equal share of workload from each phase. A disadvantage
is that the communications cost will rise due to the increased number of interface mesh nodes, but the
authors report performance improvements of up to 50% over a version of the code which does not use
overpartitioning.

Multiple partitions. A third strategy, proposed by Hendrickson et al., [14, 26], is to use two different
partitions of the mesh, one for the contact detection and the other for the finite element calculation. Indeed
the contact detection part uses the rapid recursive coordinate bisection algorithm in a dynamic sense (in
that the partition is generated anew each time-step). A disadvantage of this approach is that information
must be communicated between the two partitions at every time-step and that some memory is duplicated,
however the authors report that the advantage of achieving load-balance in both phases greatly outweighs
the cost of maintaining two partitions.
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3.6.3 The multi-constraint partitioning problem

Most closely related to the work presented here is the multi-constraint partitioning method of Karypis &
Kumar, [16], a different and in some ways more general approach that can be applied to the multiphase
partitioning problem. The idea is to view the problem as a graph partitioning problem with multiple con-
straints (in this case load-balancing constraints). Once again the vertices of the graph have a vector of
weights, in this case representing the contribution to each balancing constraint. However, in contrast to the
methods presented here, Karypis & Kumar solve the problem in a single multilevel computation (rather
than on a phase by phase basis). The multilevel methods are then modified in a number of ways. Firstly,
during the contraction procedure the matching is driven by trying to create vertex clusters with balanced
weights in each phase. Thus a vertex with weight vector q]�;
-{Tx would match with an adjacent vertex with
weight vector q {�
3�vx in preference to vertices with weights qy�z
{Tx or qy�z
u�vx in order to create a balanced cluster.
The refinement phase meanwhile uses greedy refinement which migrates vertices between subdomains if
the movement improves the partition quality subject to the balancing constraints or improves the balance
without worsening the quality (in this context the word quality refers to the cut-weight). The initial parti-
tioning is done with recursive multilevel bisection (once the coarsened graph is smaller than �z{z� vertices)
and uses multiple queues to satisfy the constraints.

The results in presented [16] suggest that this approach is well able to handle the multiple constraints
and provides partition qualities around 20-70% worse than a single constraint algorithm (acting on the same
graph without multiple weights) and the partition takes around 1.5 to 3 times longer to compute. These
are not unreasonable overheads given the additional complexity of the problem. However, the problems
on which Karypis & Kumar test their algorithms are somewhat artificial and so is it difficult to draw any
meaningful conclusions (for example they do not test a simple two-phase problem – e.g. see

�
4.1).

This multi-constraint paradigm is a more general approach than the multiphase strategy presented here
since it could, for example, be applied to the problem of trying to balance computational and memory
requirements where, say, the weight vector for vertex � , qs� ���O4T
<� ��� 8vx has entries � ��� 4 which represents the
computational cost and � ��� 8 which represents the memory requirement. Our approach, on the other hand,
requires that � ��� k ��{ for at least some ����� and j_���;
3tut3tv
o . However the results in Section 4 suggest
that our more focussed approach can work well on the (large) subset of multiphase problems for which
it is designed. Also the multiphase approach is somewhat simpler to implement since it merely involves
a wrapper around the multilevel partitioner and can, in principle, reuse existing software features and
components such as, for example, dynamic load-balancing techniques, [30].

3.6.4 Separator theory for graphs with multiple weights

A separator for a graph is a small set of vertices or edges whose removal divides the graph into disjoint
pieces of approximately equal size. A class of graphs is said to satisfy an �+�^�'� vertex separator theorem if
there are constants �i��� and ��|g{ such that every graph of � vertices in the class has a separator of at
most ���+�b�'� vertices whose removal leaves no connected component with more than ��� vertices. Several
useful classes of graphs can be shown to satisfy separator theorems; for example, Lipton & Tarjan showed,
[18], that planar graphs have an ���^�e�� � vertex separator which partitions the graph into two sets whose
size is at least �RS6� . In [6, 7], Djidjev & Gilbert extended the result to show that graphs which satisfy an�'� vertex separator theorem also satisfy the same theorem if multiple weights are attached to each vertex.
Karypis & Kumar have also investigated the same issue, [16], although not achieving such a strong result.

In the context of this paper we are interested in edge separators (the cut-edges can be referred to as an
edge separator). Of course it is possible to find an edge separator for a graph ���^�~
-��� by finding a vertex
separator of the dual graph �[�	�^��
-���s� where each edge ����� of � is represented by a vertex in �[� and there
are dual edges �T���f�[� for every pair of edges � 4 
� 8 �f� incident on the same vertex ���'� (i.e. � 4 ���b�&
-c 4 �
and � 8 ���b�&
-c 8 � for some vertices c 4 
7c 8 �N� with c 4����c 8 ). However, such dual graphs, even if derived
from simple 2D planar FE & FV meshes, are not themselves planar and so the separator theory, although of
interest, is of limited use here.
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4 Experimental results

In this section we test the multiphase partitioning strategy on three different sorts of multiphase mesh
partitioning problems (MMPPs). We do not test the algorithms exhaustively; it is not too difficult to derive
MMPPs, pathological and otherwise, for which the multiphase partitioning strategy will fail. However, we
do attempt to demonstrate that there is a fairly large class of problems for which standard mesh partitioning
techniques will completely fail to balance individual computational phases, but for which the multiphase
approach can achieve high quality partitions.

4.1 Distinct phase results

The first set of experiments are performed on a set of artificial but not unrealistic examples of distinct
two-phase problems. By distinct we mean that the computational phase regions do not overlap and are
separated by a relatively small interface. Such problems are typical of many multiphysics computational
mechanics applications such as fluid-solid interaction, e.g [1].

name � 4 � 8 � description
512x256 65536 65536 261376 2D regular grid
crack 4195 6045 30380 2D nodal mesh
dime20 114832 110011 336024 2D dual mesh
64x32x32 32768 32768 191488 3D regular grid
brack2 33079 29556 366559 3D nodal mesh
dime20 51549 51532 200976 3D dual mesh

Table 1: Distinct phase meshes

The problems are constructed by taking a set of 2D & 3D meshes, some regular grids and some with
irregular (or unstructured) adjacencies and geometrically bisecting them so that one half is assigned to
phase 1 and the other half to phase 2. Table 1 gives a summary of the mesh sizes and classification, where��4 represents the number of type 1 vertices and similarly for ��8 . These are possibly the simplest form of
two-phase problems that one could imagine and provide a demonstration of the need for multiphase mesh
partitioning.

We have tested the meshes with 3 different partitioners for 3 different values of � , the number of sub-
domains/processors. The first of these partitioners, JOSTLE-S, is simply the standard multilevel mesh
partitioner JOSTLE, [28], which takes no account of the different phases. The multiphase version of jos-
tle, JOSTLE-M and the parallel multiphase version, PJOSTLE-M, incorporate the multiphase partitioning
paradigm as described in this paper.

The results in Table 2 show for each mesh and value of � the proportion of cut edges, � � H � SW� ��� , (which
gives an indication of the partition quality in terms of communication overhead) and the imbalance for the
two phases, � 4 & � 8 respectively. These three quality metrics are then averaged for each partitioner and
value of � .

As suggested, JOSTLE-S, whilst achieving the best minimisation of cut-weight, completely fails to bal-
ance the two phases (since it takes no account of them). On average (and as one might expect from the
construction of the problem) the imbalance is approximately 2 – i.e. the largest subdomain is twice the size
that it should be and so the application might be expected to run twice as slowly as a well partitioned
version (neglecting any communication overhead). This is because the single phase partitioner ignores the
different graph regions and (approximately) partitions each phase between half of the processors. Both the
multiphase partitioners, however, manage to achieve good balance, although note that all the partitioners
have an imbalance tolerance, set at run-time, of 1.03 – i.e. any imbalance below this is considered negligible.
This is particularly noticeable for the serial version, JOSTLE-M, which, because of its global nature is able to
utilise the imbalance tolerance to achieve higher partition quality (see [28]) and thus results in imbalances
close to (but not exceeding) the threshold of 1.03. The parallel partitioner, PJOSTLE-M, on the other hand,
produces imbalances much closer to 1.0 (perfect balance).
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����� ����  �����D¡
mesh � �=H<� S�� �¢� ��4 ��8 � �=H<� SW� ��� �/4 �&8 � �=H<� S�� �¢� ��4 ��8

JOSTLE-S: jostle single-phase
512x256 0.004 2.000 2.000 0.006 2.000 2.000 0.011 2.000 2.000
crack 0.015 1.906 1.614 0.026 2.434 1.692 0.041 2.445 1.709
dime20 0.001 1.881 1.726 0.003 1.986 2.036 0.004 1.972 2.049
64x32x32 0.023 2.000 2.000 0.038 2.000 2.000 0.052 2.000 2.000
brack2 0.008 1.932 2.096 0.023 1.937 2.138 0.037 1.949 2.145
mesh100 0.008 2.012 1.987 0.016 2.011 2.015 0.025 2.034 2.005
average 0.010 1.955 1.904 0.019 2.061 1.980 0.028 2.067 1.985

JOSTLE-M: jostle multiphase
512x256 0.004 1.025 1.026 0.009 1.028 1.019 0.013 1.028 1.026
crack 0.016 1.025 1.027 0.030 1.025 1.028 0.055 1.027 1.029
dime20 0.002 1.027 1.015 0.003 1.020 1.025 0.006 1.016 1.018
64x32x32 0.027 1.026 1.029 0.041 1.030 1.029 0.063 1.026 1.030
brack2 0.021 1.010 1.014 0.034 1.030 1.030 0.052 1.029 1.026
mesh100 0.011 1.023 1.021 0.020 1.022 1.029 0.034 1.023 1.029
average 0.013 1.023 1.022 0.023 1.026 1.027 0.037 1.025 1.026

PJOSTLE-M: parallel jostle multiphase
512x256 0.006 1.000 1.000 0.010 1.000 1.000 0.016 1.000 1.001
crack 0.016 1.000 1.000 0.036 1.000 1.001 0.055 1.000 1.000
dime20 0.002 1.000 1.000 0.004 1.000 1.000 0.007 1.001 1.001
64x32x32 0.029 1.000 1.000 0.046 1.000 1.002 0.066 1.002 1.013
brack2 0.020 1.000 1.001 0.033 1.000 1.002 0.052 1.001 1.005
mesh100 0.011 1.000 1.000 0.021 1.000 1.000 0.033 1.002 1.001
average 0.014 1.000 1.000 0.025 1.000 1.001 0.038 1.001 1.004

Table 2: Distinct phase results

In terms of the cut-weight, JOSTLE-M produces partitions about 28% worse on average than JOSTLE-S
and those of PJOSTLE-M are about 35% worse. These are to be expected as a result of the more complex
partitioning problem and are in line with the 20-70% deterioration reported by Karypis & Kumar for their
multi-constraint algorithm, [16].

We do not show run time results here and indeed the multiphase algorithm is not particularly time-
optimised but, for example, for ’mesh100’ and �J�£�u¡ , the run times on a DEC Alpha workstation were
3.30 seconds for JOSTLE-M and 2.22 seconds for JOSTLE-S. For the same mesh in parallel on a Cray T3E
(with slower processors) the run times were 5.65 seconds for PJOSTLE-M and 3.27 for PJOSTLE-S (the
standard single-phase parallel version described in [29]). On average the JOSTLE-M results were about 1.5
times slower than those of JOSTLE-S and PJOSTLE-M was about 2 times slower than PJOSTLE-S. This is
well in line with the 1.5 to 3 times performance degradation suggested for the multi-constraint algorithm,
[16].

4.2 Multiple mesh entities

The second set of test examples arise again from two phase problems but in this set of experiments the
phases are not well separated with a small interface as above, but highly integrated and very intercon-
nected. This type of multiphase problem can easily arise for a solver in which different calculations take
place on mesh nodes from those taking place on mesh elements and the two calculations are separated by
global synchronisation points in the solver. This issue is discussed in [24] and we simulate it taking a set
of meshes and assigning the elements to phase 1 and the nodes to phase 2 (although similar results, not
shown here, are achieved if the assignment is reversed).

The set of 4 meshes are summarised in Table 3 with � 4 representing the number of mesh elements and� 8 the number of mesh nodes.
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name ��4 ��8 � description
4elt 30269 15606 181614 2D triangular mesh
t60k 60005 30570 360030 2D triangular mesh
cs4 22499 4083 161574 3D tetrahedral mesh
mesh100 103081 20596 742162 3D tetrahedral mesh

Table 3: Node/element meshes

Table 4 shows the partitioning results in the same form as Table 2. Interestingly, the single phase al-
gorithm, JOSTLE-S, actually does a very good job for the 2D meshes, balancing both mesh elements and
nodes well. This is not too surprising since the type 1 & type 2 graph vertices (the mesh elements & nodes)
are closely integrated and any reasonably compact subdomain is like to contain an equal share of both.
However for the 3D meshes, with their more complex distribution patterns and relatively much smaller
proportion of nodes to elements, this coincidence starts to break down and although the elements are well
balanced, the mesh nodes are not that well balanced (e.g. 8.6% imbalance for mesh ‘cs4’, �g�¤�u¡ ), confirm-
ing the issues raised in [24].

����� ����  �e�g�u¡
mesh � �KHD� SW� ��� ��4 �&8 � �=HT� SW� ��� ��4 ��8 � �KHD� SW� ��� ��4 �&8

JOSTLE-S: jostle single-phase
4elt 0.008 1.000 1.001 0.010 1.003 1.007 0.016 1.012 1.018
t60k 0.003 1.001 1.003 0.008 1.002 1.004 0.014 1.005 1.014
mesh100 0.015 1.030 1.036 0.029 1.019 1.042 0.044 1.013 1.079
cs4 0.051 1.008 1.076 0.073 1.021 1.084 0.105 1.018 1.086
average 0.019 1.010 1.029 0.030 1.011 1.034 0.045 1.012 1.049

JOSTLE-M: jostle multiphase
4elt 0.007 1.018 1.016 0.010 1.019 1.028 0.017 1.021 1.025
t60k 0.003 1.004 1.003 0.008 1.014 1.019 0.015 1.020 1.024
mesh100 0.015 1.029 1.029 0.029 1.028 1.030 0.049 1.026 1.029
cs4 0.057 1.028 1.029 0.077 1.028 1.027 0.119 1.016 1.023
average 0.021 1.020 1.019 0.031 1.022 1.026 0.050 1.021 1.025

PJOSTLE-M: parallel jostle multiphase
4elt 0.006 1.000 1.000 0.011 1.000 1.000 0.019 1.001 1.005
t60k 0.004 1.000 1.000 0.008 1.000 1.000 0.016 1.000 1.003
mesh100 0.019 1.000 1.000 0.034 1.000 1.009 0.054 1.000 1.014
cs4 0.054 1.000 1.008 0.081 1.000 1.016 0.114 1.000 1.023
average 0.021 1.000 1.002 0.033 1.000 1.006 0.051 1.000 1.011

Table 4: Node/element results

The multiphase results again bear out the trends seen in Table 2; the multiphase partitioners balance both
phases well with the parallel version, PJOSTLE-M achieving the best balances. Meanwhile the cut-weight
is even closer to that attained by the single-phase algorithm and, respectively, the results of JOSTLE-M &
PJOSTLE-M are just 8.5% & 11.7% worse than JOSTLE-S. This relative closeness is a function of the fairly
even distribution of the nodes & elements throughout the mesh.

Again, we do not show run time results here but, for example, for ’t60k’ and ���r�u¡ , the run times on
a DEC Alpha workstation were 2.65 seconds for JOSTLE-M and 1.88 seconds for JOSTLE-S. For the same
mesh in parallel on a Cray T3E (with slower processors) the run times were 4.39 seconds for PJOSTLE-
M and 3.62 for PJOSTLE-S. On average the JOSTLE-M results were about 1.25 times slower than those of
JOSTLE-S and PJOSTLE-M was about 1.1 times slower than PJOSTLE-S. This is better the 1.5 to 3 times
performance degradation suggested for the multi-constraint algorithm, [16], although Karypis & Kumar
did not test this type of problem there.
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4.3 Contact-Impact results

The third set of test meshes arise from an industrial application and are some examples of contact-impact
simulations. This sort of problem has been discussed in

�
3.6.2 and the load-balancing issues and cost mod-

elling have been investigated in detail by the DRAMA project, [3, 19, 21].

name ��4 �&8 � description
box 488 3882 9242 3D box beam crumpling simulation
audi 2750 53071 112597 3D AUDI car crash simulation
bmw 5508 95534 208157 3D BMW car crash simulation

Table 5: Node/element meshes

These particular examples, summarised in Table 5, were generated by the PAM-CRASH code, [5],
shortly after contact had occurred. As a result the areas of contact consist of many scattered penetration
nodes (mesh nodes where two different parts of the mesh interpenetrate) as the metal shell under simula-
tion starts to buckle. Thus, the type 1 vertices are distributed between many disconnected regions (up to
244 regions in the case of the bmw mesh). This results in an extremely complex partitioning problem.

����� ����  ���g�u¡
mesh � � H � SW� ��� � 4 � 8 � � H � S�� ��� � 4 � 8 � � H � SW� ��� � 4 � 8

JOSTLE-S: jostle single-phase
box 0.026 2.038 1.047 0.039 3.985 1.082 0.059 4.175 1.117
audi 0.003 2.092 1.046 0.009 3.777 1.050 0.012 6.129 1.075
bmw 0.005 2.858 1.048 0.009 5.151 1.044 0.014 5.774 1.048
average 0.011 2.329 1.047 0.019 4.304 1.059 0.028 5.359 1.080

JOSTLE-M: jostle multiphase
box 0.027 1.029 1.010 0.064 1.029 1.027 0.115 1.021 1.023
audi 0.012 1.027 1.027 0.017 1.022 1.029 0.028 1.025 1.029
bmw 0.010 1.019 1.026 0.019 1.029 1.030 0.027 1.029 1.030
average 0.016 1.025 1.021 0.033 1.027 1.029 0.057 1.025 1.027

PJOSTLE-M: parallel jostle multiphase
box 0.028 1.013 1.000 0.070 1.036 1.012 0.107 1.265 1.016
audi 0.011 1.011 1.001 0.017 1.024 1.002 0.026 1.028 1.010
bmw 0.010 1.002 1.000 0.021 1.010 1.005 0.038 1.019 1.031
average 0.016 1.009 1.000 0.036 1.023 1.006 0.057 1.104 1.019

Table 6: Contact/impact results

The partitioning results are shown in Table 6 and it can be seen that, with one exception (PJOSTLE-M
for the ‘box’ mesh, �e�g�u¡ ), the multiphase partitioners achieve load-balance within the tolerance of 1.03.

The single-phase version, JOSTLE-S, completely fails to achieve balance, particularly with the contact
nodes, which, although they are scattered mainly occur in the front portion of each mesh (where the impact
has taken place). However the shell nodes are not well balanced either.

In terms of cut weight, JOSTLE-M and PJOSTLE-M achieve results which are about 2 times worse than
JOSTLE-S (82% and 87% worse respectively). Again, this reflects the highly complex nature of the parti-
tioning problem.

Once again, we do not show run time results here but, for example, for the ’audi’ mesh and �����u¡ , the
run times on a DEC Alpha workstation were 1.80 seconds for JOSTLE-M and 1.02 seconds for JOSTLE-S.
For the same mesh in parallel on a Cray T3E (with slower processors) the run times were 2.98 seconds for
PJOSTLE-M and 2.33 for PJOSTLE-S. On average the JOSTLE-M results were about 1.9 times slower than
those of JOSTLE-S and PJOSTLE-M was about 1.6 times slower than PJOSTLE-S. This again compares well
with the 1.5 to 3 times performance degradation suggested for the multi-constraint algorithm, [16].
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5 Summary and future research

We have described a new approach for addressing the load-balancing issues of CM codes containing mul-
tiple computational phases. This approach, the multiphase mesh partitioning strategy, consists of a graph
manipulation wrapper around an almost standard ‘black box’ multilevel mesh partitioner, JOSTLE, which
is used to partition each phase individually. As such the strategy is relatively simple to implement and
could, in principle, reuse existing features of the partitioner, such as minimising data migration in dynamic
repartitioning context.

We have tested the strategy on examples of MMPPs arising from three different applications and demon-
strated that it can succeed in producing high quality, balanced partitions where a standard mesh partitioner
simply fails (as it takes no account of the different phases). However, we have not tested the strategy ex-
haustively and acknowledge that it is not too difficult to derive MMPPs for which it will not succeed. In
fact, in this respect it is like many other heuristics (including most mesh partitioners) which work for a
broad class of problems but for which counter examples to any conclusions can be found.

Some examples of the multiphase mesh partitioning strategy in action for contact-impact problems can
be found in [3], but with regard to future work in this area, it would be useful to investigate its performance
in a variety of other genuine CM codes. In particular, it would be useful to look at examples for which it
does not work and either try and address the problems or at least characterise what features it cannot cope
with.

More specifically we are particularly interested in looking at better ways of joining disconnected regions
(see

�
3.5.1) and we believe that this would enhance the performance of the strategy for the contact-impact

problems (
�
3.6.2 &

�
4.3). Currently this is achieved with a somewhat random approach and we believe that

this could be improved by incorporating geometric information.
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