Multilevel Mesh Partitioning for Aspect Ratio

C. Walshaw!, M. Cross', R. Diekmann?, and F. Schlimbach?

! School of Computing and Mathematical Sciences, The University of Greenwich,
London, SE18 6PF, UK. {C. Wl shaw, M Cross}@re. ac. uk
2 Department of Computer Science, University of Paderborn, Fiirstenallee 11,
D-33102 Paderborn, Germany. {di ek, schl i nbo}@uni - pader bor n. de

Abstract. Multilevel algorithms areasuccessful classof optimisation techniques
which addressthe mesh partitioning problem. They usually combine a graph con-
traction algorithm together with alocal optimisation method which refinesthe par-
tition at each graph level. To date these algorithms have been used almost exclu-
sively to minimise the cut-edge weight, however it hasbeen shownthat for certain
classesof solution algorithm, the convergenceof the solver is strongly influenced
by the subdomain aspect ratio. In this paper therefore, we modify the multilevel
algorithmsin order to optimise a cost function based on aspect ratio. Several vari-
ants of the algorithms are tested and shown to provide excellent resullts.

1 Introduction

The need for mesh partitioning arises naturally in many finite eement (FE) and finite
volume (FV) applications. Meshes composed of e ements such as triangles or tetrahe-
dra are often better suited than regularly structured grids for representing compl etely
general geometries and resolving wide variationsin behaviour viavariable mesh densi-
ties. Meanwhile, the modelling of complex behaviour patterns means that the problems
are often too largeto fit onto serial computers, either because of memory limitationsor
computational demands, or both. Distributingthe mesh acrossaparallel computer so that
the computationa load is evenly balanced and the datalocality maximised is known as
mesh partitioning. It iswell known that this problem isNP-complete, so in recent years
much attention has been focused on devel oping suitable heuristics, and some powerful
methods, many based on a graph corresponding to the communication regquirements of
the mesh, have been devised, eg. [12].

A particularly popular and successful class of agorithmswhich address this mesh
partitioning problem are known as multilevel algorithms. They usually combineagraph
contraction a gorithmwhich creates a series of progressively smaller and coarser graphs
together withalocal optimisation method which, startingwith the coarsest graph, refines
the partition at each graph level. These algorithms have been used almost exclusively
to minimise the cut-edge weight, a cost which approximates the total communications
volume in the underlying solver. Thisisan important goa in any paralel application,
to minimise the communications overhead, however, it has been shown, [18], that for
certain classes of solution algorithm, the convergence of the solver is actually heavily
influenced by the shape or aspect ratio (AR) of the subdomains. In this paper therefore,
we modify the multilevel algorithms (the matching and local optimisation) in order to
optimise a cost function based on AR. We also abstract the process of modification in
order to suggest how the multilevel strategy can be modified into a generic technique
which can optimise arbitrary cost functions.

1.1 Domain decomposition preconditioners and aspect ratio

To motivate the need for aspect ratio we consider the requirements of a class of solu-
tiontechniques. A natural parallel solution strategy for the underlying problemisto use
an iterative solver such as the conjugate gradient (CG) a gorithm together with domain
decomposition (DD) preconditioning, e.g. [2]. DD methods take advantage of the par-
tition of the mesh into subdomains by imposing artificial boundary conditions on the
subdomain boundaries and solving the original problem on these subdomains, [4]. The
subdomain solutions are independent of each other, and thus can be determined in par-
allel without any communication between processors. In a second step, an ‘interface’
problemissolved on the inner boundarieswhich depends on the jump of the subdomain
solutionsover the boundaries. Thisinterface problem gives new conditionson theinner
boundariesfor the next step of subdomain solution. Adding the results of the third step
to thefirst givesthe new conjugate search direction in the CG agorithm.

The time needed by such a preconditioned CG solver is determined by two factors,
the maximum time needed by any of the subdomain solutionsand the number of itera-
tions of the globa CG. Both are at |east partially determined by the shape of the subdo-
mains. Whil st an algorithm such asthe multigrid method asthe sol ver on the subdomains
isrelatively robust against shape, the number of global iterationsare heavily influenced
by the AR of subdomains, [17]. Essentialy, the subdomains can be viewed as e ements
of theinterface problem, [7, 8], and just as with the normal finite element method, where
the condition of the matrix system is determined by the AR of elements, the condition
of the preconditioning matrix is here dependent on the AR of subdomains.

1.2 Oveview

Below, in Section 2, we introducethe mesh partitioning problem and establish some ter-
minology. We then di scuss the mesh partitioning problem as applied to AR optimisation
and describe how the graph needs to be modified to carry this out. Next, in Section 3,
we describe the multilevel paradigm and present and compare three possible matching
algorithms which take account of AR. In Section 4 we then describe a Kernighan-Lin
(KL) typeiterativeloca optimisationalgorithm and describe two possi blemodifications
which aim to optimise AR. Finally in Section 5 we compare the results with a cut edge
partitioner, suggest how the multilevel strategy can be modified into ageneric technique
and present some idess for further investigation.
The principa innovations described in this paper are:

In §2.2 we describe how the graph can be modified to take AR into account.

In §3.2 we describe three matching a gorithms based on AR.

In §4.3 we describe two ways of using the cost function to optimisefor AR.

In §4.4 we describe how the bucket sort can be modified to take into account non-
integer gains.

2 Themesh partitioning problem

To define the mesh partitioning problem, let ¢ = G(V, E') be an undirected graph of
vertices V', with edges £ which represent the data dependenciesin the mesh. We assume
that both vertices and edges can be weighted (with positiveinteger values) and that |v|
denotes the weight of avertex v and similarly for edges and sets of vertices and edges.
Given that the mesh needs to be distributed to P processors, define a partition = tobe a

mapping of V' into P digoint subdomains.S, suchthat | J, S, = V. To evenly balance
the load, the optimal subdomain weight isgivenby S := [|V|/P] (where the ceiling
function [z] returnsthe smallest integer >) and the imbalance is then defined as the
maximum subdomain weight divided by the optimal (since the computational speed of
the underlying application is determined by the most heavily weighted processor).

The definition of the mesh-partitioning problem is to find a partition which evenly
balancestheload or vertex weight in each subdomain whil st minimising some cost func-
tion 7. Typicaly this cost function is simply the total weight of cut edges, but in this
paper we describe a cost function based on AR. A more precise definition of the mesh-
partitioning problem is therefore to find 7 such that S, < .5 and such that " is min-
imised.

2.1 Theaspect ratio and cost function

We seek to modify themethods by optimisingthe partition onthebasisof AR rather than
cut-edgeweight. In order todo thisit isnecessary to define acost function whichwe seek
to minimise and alogica choice would be max, AR(S,), where AR(S,) isthe AR of
the subdomain 5, . However maximum functions are notorioudly difficult to optimise
(indeed it isfor thisreason that most mesh partitioning a gorithms attempt to minimise
thetotal cut-edge weight rather than the maximum between any two subdomains) and
so instead we choose to minimise the average AR

FARIZ%~ (1)
P

There are severa definitions of AR, however, and for example, for a given poly-
gon S, atypical definition, [15], isthe ratio of the largest circle which can be contained
entirely within S (inscribed circle) to the smallest circle which entirely contains S (cir-
cumcircle). However these circles are not easy to calculate for arbitrary polygons and
in an optimisation code where ARs may need to be calculated very frequently, we do
not believe thisto be a practical metric. It may also fail to express certain irregularities
of shape. A careful discussion of the relative merits of different ways of measuring AR
may be found in [16] and for the purposes of this paper we follow the ideas therein and
define the AR of a given shape by measuring the ratio of its perimeter length (surface
areain 3d) over that of some ideal shape with identica area (volumein 3d).

Supposethen that in 2d theideal shape is chosen to be asguare. Given a polygon S
witharea 2.5 and perimeter length 0.5, theideal perimeter length (the perimeter length
of asquare with area £25) is4+v/{25 and so the AR isdefined as 9.5/4/§25. Alterna
tively, if theideal shapeischosen to be acircle then the same argument givesthe AR of
05/2+/ 7§25, Infact, given thedefinition of the cost function (1) it can be seen that these
two definitionswill produce the same optimisation problem (and hence the same results)
with the cost just modified by a constant C' (where C' = 1/4 for thesquareand 1/2/7
for circle). These definitionsof AR are easily extendible to 3d and given a polyhedron
S with volume 25 and surface area 95, the AR can be calculated as C'9.5/(£25)?/3,
where C' = 1/4 if the cube is chosen as the optimal shape and C' = 1/(47)'/33%/3 for
thesphere. Notethat henceforth, in order to talk in general termsfor both 2d & 3d, given
an object S we shall use theterms 95 or surface for the surface area (3d) or perimeter
length (2d) of the object and 2.5 or volume for the volume (3d) or area (2d).

Of the above definitionsof AR we chooseto use the square/cube based formul ae for
two reasons; firstly because we are attempting to partition amesh into interlocking sub-
domains(and circles/spheresarenot knownfor their interlocking qualities) and secondly
because it gives a convenient formulafor the cost function of:

1 oS
Rem ae = = 71)
e Z (25

pE= 2
p) T
where C' = 2dP and d (= 2 or 3) isthe dimension of the mesh. We refer to this cost
function as enae OF 1} because of theway it triesto match shapes to chosen templates.
In fact, it will turn out (see for example §3.2) that even this function may be too
complex for certain optimisation needs and we can define a simpler one by assuming
that all subdomains have approxi mately the same volume, £25, ~ 2M /P, where 2M
isthe tota volume of the mesh. This assumption may not necessarily be true, but it is
likely to be true locally (see §4.5). We can then approximate (2) by

1
Rempdate ~ a Z aSp (3)
P

d—

where ¢/ = 2dP#(£2M)"7 . This can be simplified still further by noting that the
surface of each subdomain .S, consists of two components, the exterior surface, 9°.5,,
where the surface of the subdomain coincides with the surface of the mesh 9 M, and the
interior surface, 9'S,,, where S, is adjacent to other subdomains and the surface cuts
through the mesh. Thus we can bresk the) © 9.5, term in (3) into two parts > _, d'S,
and) 9°S, and simplify (3) further by notingthat 3 9°.5, isjust 9M, the exterior
surface of themesh M. Thisthen gives us asecond cost function to optimise:

1 7 -
erfa:e:EZp:a Sp‘i‘[&Q (4)

where K; = 2dP%(.(2M)dE—1 and K2 = dM/K;. We refer to this cost function as
T anae OF 1's because it isjust concerned with optimising surfaces.

2.2 Modifying the graph

Fig. 1. Left to right: asimple mesh (a), its dual (b), the same mesh with combined elements (c)
and its dual (d)

To use these cost functionsin agraph-partitioning context, we must add some additional
qualitiesto the graph. Figure 1 shows avery simple mesh (1a) and its dua graph (1b).
Each element of the mesh correspondsto avertex inthegraph. The verticesof thegraph
can be weighted as isusua (to carry out load-balancing) but in addition, vertices store
thevolumeand total surface of their corresponding dement (e.g. 2v; = 2¢; and dvy =
Je1). We also weight the edges of the graph with the size of the surface they correspond
to. Thus, in Figure 1, if D(b, ¢) refersto the distance between pointsé and ¢, then the
weight of edge (v1, v2) isset to D(b, ¢). In thisway, for vertices v; corresponding to
elements which have no exterior surface, the sum of their edge weightsis equivalent
to their surface (Ov; = > g |(vs, v;)]). Thus for vertex va, dvy = ey = D(b,¢) +
D(c,e) + D(e.b) = |(vs, v1)| + |(v2, vs)| + | (v2, v5)].

When it comes to combining elements together, either into subdomains, or for the
multilevel matching (§3) these properties, volume and surface can be easily combined.
ThusinFigurelcwhere £y = e; +ey4, /s = es+e5 and F5 = e3 we seethat volumes
can bedirectly summed, for example 2V, = 2F, = Qe + 2e4 = vy + 2v4, 85CaN
edgeweights, eg. |(V1,V2)| = D(b,¢) + D(c,d) = |(v1, v2)| + |(va, vs)|. The surface
of acombined object S isthe sum of the surfaces of its constituent parts less twice the
interior surface, e.g. O0Vi = OF, = Oey +0eq —2 % D(Cl, C) = vy +0vy — 2|(Ul, U4)|.
These propertiesare very similar to propertiesin conventional graph agorithms, where
thevolume combinesin the sameway asweight and surfaces combineasthe sum of edge
weights (althoughincluding an additional term which expresses the exterior surface 0¢).
The edge weights functionidentically.

Note that with these modifications to the graph, it can be seen that if we optimise
using the I'; cost function (4), the AR mesh partitioning problemisidentical to the cut-
edge weight mesh partitioning problem with aspecia edge weighting. However, thein-
clusion of non integer edge weights does have an effect on the some of the techniques
that can be used (e.g. see §4.4).

2.3 Tedgtingthealgorithms

Table 1. Test meshes

mesh no. vertices no. edges type aspect ratio mesh grading
uk 4824 6837 2dtriangles 3.39 7.98e+02
60k 60005 89440 2dtriangles 1.60 2.00e+00
dime20 224843 336024 2dtriangles 1.87 3.70e+03
cA 22499 43858 3dtetrahedra 1.07 9.64e+01
mesh100 103081 200976 3dtetrahedra 1.63 2.45e+02
cyl3 232362 457853 3dtetrahedra 1.28 8.42e+00

Throughout this paper we compare the effectiveness of different approaches using a
set of test meshes. The algorithmshave been implemented withinthe framework of JOS-
TLE, amesh partitioning software tool developed at the University of Greenwich and
freely availablefor academic and research purposesunder alicensing agreement (avail-
ablefrom htt p: // www. gre. ac. uk/~ c. wal shaw/ j ost | e). The experiments
were carried out on a DEC Alphawith a466 MHz CPU and 1 Gbyte of memory. Due
to space considerations we only include 6 test meshes but they have been chosen to be
arepresentative sample of medium to large scale real -life problems and include both 2d
and 3d examples. Table 1 givesalist of themeshes and their sizesin terms of the number
of vertices and edges. The table also shows the aspect ratio of each entire mesh and the
mesh grading, which here we define as the maximum surface of any element over the
minimum surface, and these two figures give aguideas to how difficult the optimisation

may be. For example, ‘uk’ is simply atriangulation of the British mainland and hence
has a very intricate boundary and therefore a high aspect ratio. Meanwhile, ‘ dime20’
which has a moderate aspect ratio, has been very heavily refined in parts and thus has
a high mesh grading — the largest element has a surface around 3,700 times larger than
that of the smallest.

Table 2. Final results using template cost matching and surface gain/template cost optimisation

P =16 P =32 P =64 P =128
mesh It |E] t. It |E ¢t I |EB| ¢t I |E| ¢
uk 148 206 012131 331 012123 543 022125 917 050

60k 116 1003 1.631.10 1547 2.07 1.11 2437 233111 3647 265
dime20 122 1623 5.781.20 2868 5.17 1.15 4406 5.701.12 6620 7.57
csA 122 2727 0.851.22 3738 0.901.23 5066 1.121.23 6747 1.60
mesh100 1.25 5950 3.20 1.24 8752 3.53 1.26 12467 4.131.28 17346 5.13
cyl3 1.21 11141 10.05 1.21 15944 10.77 1.23 22378 13.02 1.22 29719 13.18

Table 2 shows the results of the final combination of algorithms—TCM (see §3.2)
and SGTC (see §4.3) — which were chosen as a benchmark for the other combinations.
For the 4 different values of P (the number of subdomains), thetable showsthe average
aspect ratio as given by I, the edge cut | E.| (that is the number of cut edges, not the
weight of cut edges weighted by surface size) and the time in seconds, ¢, to partition
the mesh. Notice that with the exception of the ‘uk’ mesh, al partitions have average
aspect ratios of less than 1.30 which is well within the target range suggested in [6].
Indeed for the ‘uk’ mesh it is no surprise that the results are not optimal because the
subdomains inherit some of the poor AR from the origina mesh (which has an AR of
3.39) and itisonly when the mesh is splitinto small enough pieces, P = 64 or 128, that
the optimisation succeeds in ameliorating this effect. Intuitively thisalso givesahint as
towhy DD methods are a very successful technique as a solver.

3 Themultilevel paradigm

Inrecent yearsit has been recogni sed that an effective way of both speeding up partition
refinement and, perhaps more importantly giving it a global perspective isto use multi-
level techniques. Theideaisto match pairsof verticestoform clusters, usetheclustersto
defineanew graph and recursively iteratethis procedure until the graph size fallsbelow
some threshold. The coarsest graph is then partitioned and the partitionis successively
optimised on al the graphs starting with the coarsest and ending with theorigina. This
sequence of contraction followed by repeated expansi on/optimisation loopsisknown as
themultilevel paradigm and has been successfully devel oped as a strategy for overcom-
ing the localised nature of the KL (and other) optimisation algorithms. The multilevel
ideawas first proposed by Barnard & Simon, [1], as a method of speeding up spectra
bisection and improved by Hendrickson & Leland, [11], who generalised it to encom-
passlocal refinement algorithms. Several algorithmsfor carrying out the matching have
been devised by Karypis & Kumar, [13], while Walshaw & Cross describe a method for
utilisingimbalance in the coarsest graphsto enhance the find partition quality, [19].

3.1 Implementation

Graph contraction. To create a coarser graph Giy1(Vig1, Fiy1) from Gi(V;, E;) we
use a variant of the edge contraction agorithm proposed by Hendrickson & Leland,

[11]. The ideaiisto find a maximal independent subset of graph edges, or a matching
of vertices, and then collapse them. The set is independent because no two edges in
the set are incident on the same vertex (so no two edges in the set are adjacent), and
maximal because no more edges can be added to the set without breaking the indepen-
dencecriterion. Having found such a set, each sel ected edgeiscollapsed and the vertices,
u1, ug € V; say, a ether end of it aremerged toformanew vertex v € V41 withweight
ol = Jus] + Jua].

Theinitial partition. Having constructed the series of graphs until the number of
verticesin the coarsest graph is smaller than some threshold, the normal practice of the
multilevel strategy isto carry out an initial partition. Here, following theidea of Gupta,
[10], we contract until the number of verticesin the coarsest graph is the same as the
number of subdomains, P, and then simply assign vertex ¢ to subdomain S;. Unlike
Gupta, however, we do not carry out repeated expansi on/contractioncycles of the coars-
est graphsto find awell balanced initial partition but instead, since our optimisation -
gorithm incorporates bal ancing, we commence on the expansi on/opti mi sation sequence
immediately.

Partition expansion. Having optimised the partition on a graph G, the partition
must be interpolated onto its parent G;_;. The interpolationitself isatrivial matter; if
avertex v € V; isin subdomain S, then the matched pair of vertices that it represents,
V1, Vg € Vi—1, will bein Sp.

3.2 Incorporating aspect ratio

The matching part of the multilevel strategy can be easily modified in severa waysto
take into account AR and in each case the vertices are visited (at most once) using a
randomly ordered linked list. Each vertex isthen matched with an unmatched neighbour
using thechosen matching algorithmand it and its match removed fromthelist. Vertices
with no unmatched neighbours remain unmatched and are al so removed. In addition to
Random Matching (RM), [12], where vertices are matched with random neighbours,
we propose and have tested 3 matching algorithms:

Surface Matching (SM). Aswehave seenin §2.2, the AR partitioning problem can
be approximated by the cut-edge weight problem using (4), the s cost function, and
so the simplest matching isto use the Heavy Edge approach of Karypis & Kumar, [13],
where the vertex matches across the heaviest edge to any of its unmatched neighbours.
Thisisthesame asmatching acrossthelargest surface (since here edgeweightsrepresent
surfaces) and we refer to this as surface matching.

Template Cost Matching (TCM). A second approach follows the ideas of Bouh-
mala, [3], and matches with the neighbour which minimises the cost function. In this
case, the chosen vertex matches with the unmatched neighbour which gives the result-
ing el ement the best aspect ratio. Using the 7'} cost function, werefer to thisas template
cost matching.

Surface Cost Matching (SCM). Thisis the same idea as TCM only using the I’y
cost function, (4), which isfaster to calculate.

3.3 Reaultsfor different matching functions

InTables 3,4 & 5wecomparetheresultsin Table 2, where TCM was used, withRM, SM
& SCM respectively. In all cases the SGTC optimisation al gorithm (see §4.3) was used.
For each value of P, thefirst column showsthe average AR, I of the partitioning. The
second column for each value of P then compares resultswith thosein Table 2 using the

. '(RM)y-—1
metric r(TCM)-1

for RM, etc. Thus afigure > 1 means that RM has produced worse

results than TCM. These comparisons are then averaged and so it can be seen, e.g. for
P = 16 that RM produces results 24% (1.24) worse on average than TCM. Indeed the
average quality of partitions produced by RM was 30% worse than TCM. This is not
altogether surprising since the AR of elements in the coarsest graph could be very poor
if the matching takes no account of it, and hence the optimisation has to work with badly

shaped elements.
Table 3. Random matching results compared with template cost matching
P=16 P =32 P =64 P =128
r(RMy—1 r(RM)—1 r(RM)—1 r(RM)—1
mesh I cqomy—r v rrov— It rremy—r [t rrem
uk 1.50 1.04 1.38 125 125 1.06 123 0.91
t60k 1.20 1.28 1.16 1.59 117 153 117 154
dime20 1.30 137 131 157 127 1.79 123 1.89
cA 1.29 131 127 121 1.30 1.30 1.26 115
mesh100 1.31 124 1.29 124 131 1.19 1.32 115
cyl3 125 1.19 125 1.19 1.26 115 127 122
Average 124 134 134 131

When it comesto comparing TCM with SM & SCM (Tables 4 & 5) thereisactualy
very littledifference; SM is about 3.5% worseand SCM only about 1.5%. This suggests
that the multilevel strategy is relatively robust to the matching algorithm provided the

AR istaken into account in some way.

Table 4. Surface matching results compared with template cost matching

P=16 P =32 P =64 P =128

r(SMy—1 r(SMy—1 r(SM)—1 r(SM)—1

mesh It cgom—r v rrov s It raemy—r [t Tt
uk 1.54 1.13 1.34 111 1.24 1.01 1.28 1.10
t60k 1.14 0.87 111 1.05 1.12 1.10 1.12 1.08
dime20 1.26 1.18 1.24 1.23 1.15 1.00 1.13 1.04
cs4 1.22 0.97 1.24 1.08 1.24 1.04 1.23 1.00
mesh100 1.20 0.78 1.24 1.03 1.27 1.04 1.26 0.94
cyl3 1.19 0.93 1.21 1.02 1.24 1.05 1.24 1.08
Average 0.98 1.08 1.04 1.04

Table 5. Surface cost matching results compared with template cost matching

P=16 P =32 P =64 P =128

r(SCM)—1 r(SCM)—1 r(SCM)—1 r(SCM)—1
mesh I Sy v oM It remy—r [t rTemy
uk 1.47 0.99 1.31 1.00 1.27 1.14 1.25 0.98
t60k 111 0.69 1.10 0.99 1.14 1.23 1.13 1.14
dime20 1.23 1.06 1.18 091 1.14 0.93 1.13 1.02
c4 1.23 1.04 1.23 1.04 1.24 1.03 1.23 1.00
mesh100 1.23 091 1.25 1.07 1.25 0.99 1.27 0.97
cyl3 1.22 1.06 1.23 1.10 1.23 1.02 1.24 1.06
Average 0.96 1.02 1.05 1.03

We are not primarily concerned with partitioning times here, but for the record, RM
was about 0.5% slower than TCM (athoughthisiswell withinthelimitsof noise). This
is because the optimisation stage took considerably longer (although the matching was

much faster than TCM). SM & SCM were 3.3% & 1.8% faster respectively than TCM.
Overdl thissuggeststhat TCM isthealgorithm of choice athough thereis little benefit
over SM & SCM.

4 TheKernighan-Lin optimisation algorithm

In this section we discuss the key features of an optimisation a gorithm, fully described
in [19] and then in §4.3 describe how it can be modified to optimise for AR. It isa
Kernighan-Lin (KL) type a gorithm incorporating a hill-climbing mechanism to enable
it to escape from local minima. The algorithm uses bucket sorting (§4.4), the linear time
complexity improvement of Fiduccia& Mattheyses, [9], and is a partition optimisation
formulation; in other wordsit optimisesapartitionof 7 subdomainsrather than a bisec-
tion.

4.1 Thegain function

A key concept in the method istheideaof gain. The gain g(v, ¢) of avertex v in sub-
domain S, can be calculated for every other subdomain, S, ¢ # p, and expresses how
much the cost of a given partition would be improved were v to migrate to .S,,. Thus,
if = denotesthe current partition and «’ the partition if v migratesto .S, then for a cost
functionI", thegain g(v, ¢) = I'(x") — I'(m). Assuming the migration of v only affects
the cost of S, and S, (asistruefor I} and I';) then we get

9(v,4) = AR(Sq + v) = AR(S¢) + AR(S, — v) — AR(Sp). ()

For I'; thisgives an expression which cannot be further ssimplified, however, for I,
since

1 i i
AR(S; + v) — AR(S,) i {3 (Sqg+v)—0 Sq}

1 . .
= T {8ZSq + v —2|(Sq,v)| — 0 Sq}

! 7
A {0'v —2|(Sy,v)[}

(where |(.S,, v)| denotes the sum of edge weights between S, and v), we get

2
Jastan(V,4) = 5 U5, V)| = [(Sg, v) 1} (6)
1
Noticein particular that ¢, iSthe same asthe cut-edge weight gain function and that it
isentirely localised, i.e. thegain of avertex only depends on the length of itsboundaries
with a subdomain and not on any intrinsic qualities of the subdomain which could be
changed by non-loca migration.

4.2 Theiterative optimisation algorithm

The seria optimisation algorithm, as is typical for KL type agorithms, has inner and
outer iterativeloops with the outer |oop terminating when no migration takes place dur-
ing an inner loop. The optimisation uses two bucket sorting structures or bucket trees

(see below, §4.4) and isinitialised by calculating the gain for al border verticesand in-
serting them into one of the bucket trees. These verticeswill subsequently be referred to
as candidate vertices and the tree containing them as the candidatetree.

The inner loop proceeds by examining candidate vertices, highest gain first (by al-
ways picking verticesfrom the highest ranked bucket), testing whether the vertex is ac-
ceptable for migration and then transferring it to the other bucket tree (thetree of exam-
ined vertices). Thisinner loop terminates when the candidate tree is empty athough it
may terminate early if the partition cost (i.e. the number of cut edges) risestoo far above
thecost of thebest partitionfound so far. Once theinner loop hasterminated any vertices
remaining in the candidate tree are transferred to the examined tree and finally pointers
to the two trees are swapped ready for the next pass through the inner loop.

The agorithm aso uses aKL type hill-climbing strategy; in other words vertex mi-
gration from subdomain to subdomain can be accepted even if it degrades the parti-
tion quality and | ater, based on the subsequent evolution of the partition, either rejected
or confirmed. During each pass through the inner loop, a record of the optimal parti-
tion achieved by migration within that loop is maintained together with alist of vertices
which have migrated since that value was attained. If subsequent migration findsa' bet-
ter’ partition then the migration is confirmed and the list is reset. Once the inner loop
isterminated, any verticesremaining in thelist (vertices whose migration has not been
confirmed) are migrated back to the subdomains they came from when the optimal cost
was attained.

The agorithm, together with conditionsfor vertex migration acceptance and confir-
mation isfully described in[19].

4.3 Incorporating aspect ratio: localisation

One of the advantages of using cut-edge weight asa cost functionisitslocalised nature.
When a graph vertex migrates from one subdomain to another, only the gains of adja-
cent vertices are affected. In contrast, when usingthe graph to optimise AR, if avertex v
migratesfrom S, to S,, thevolumeand surface of both subdomainswill change. Thisin
turn means that, when using thetemplate cost function (2), thegain of al border vertices
both within and abutting subdomains 5, and S, will change. Strictly speaking, &l these
gains should be adjusted with the huge disadvantage that this may involve thousands of
floating point operations and hence be prohibitively expensive. Asan aternative, there-
fore, we propose two localised variants:

Surface Gain/Surface Cost (SGSC). The simplest way to localise the updating of
the gainsisto make the assumption in §2.1 that the subdomains all have approximately
equal volumeand to usethe surface cost function I'; from (4). Asmentionedin §2.2 the
problem immediately reduces to the cut-edge weight problem, albeit with non-integer
edgeweights, and from (6) only thegains of the vertices adjacent to the migrating vertex
will need updating. However, if thisassumption is not true, it is not clear how well I’
will optimise the AR and below we provide some experimental results.

Surface Gain/Template Cost (SGTC). The second method we proposefor locais-
ing the updates of gain relies on the observation that the gainis simply used as amethod
of rating the elements so that the algorithm always visits those with highest gain first
(using the bucket sort). It is not clear how crucia thisrating isto the success of the al-
gorithm and indeed Karypis & Kumar demonstrated that (at least when optimising for
cut-edge wei ght) amost as good results can be achieved by simply visiting the vertices
inrandom order, [14]. Wetheref ore propose approxi mating the gainwith the surface cost
function 7's from (4) to rate the elements and store them in the bucket tree structure, but

using the template cost function I'; from (2) to assess the change in cost when actually
migrating an element. Thislocalises the gain function.

4.4 Incorporating aspect ratio: bucket sorting with non-integer gains

The bucket sort is an essentia tool for the efficient and rapid sorting and adjustment of
vertices by their gain. The concept was first suggested by Fiduccia & Mattheysesin [9]
andtheideaisthat all vertices of agiven gain g are placed together in a‘bucket’ which
isranked ¢. Finding a vertex with maximum gain then simply consists of finding the
(non-empty) bucket with the highest rank and picking a vertex fromit. If the vertex is
subsequently migrated from one subdomain to another then the gains of any affected
vertices have to be adjusted and the list of vertices which are candidates for migration
resorted by gain. Using abucket sort for thisoperation simply requiresrecal culating the
gains and transferring the affected vertices to the appropriate buckets. If a bucket sort
were not used and, say, the vertices were ssimply stored in alist in gain order, then the
entire list would require resorting (or at least merge-sorting with the sorted list of ad-
justed vertices), an essentialy O(N) operation for every migration.

Theimplementation of thebucket sortisfully described in[19]. Itincludesaranking
for prioritising vertices for migration which incorporates their weight as well as their
gain. The non-empty buckets are stored in a binary-tree to save excessive memory use
(since we do not know a priori how many buckets will be needed) and this structureis
referred to above as a bucket tree.

The only difficulty in adapting this procedure to AR optimisation is that with non-
integer edge weight, the gains are also rea non-integer numbers. This is not a major
probleminitself aswe can just give buckets an interval of gains rather than asinglein-
teger, i.e. thebucket ranked 1 could contain any vertex withgainintheinterval [1.0, 2.0).
However, if using the surface gain function, the issue of scaling then arises since for a
mesh entirely contai ned within the unit square/cube, al theverticesare likely to end up
in one of two buckets (dependent only on whether they have positiveor negative gains).
Fortunately, if using /s asagain function, asin SGSC and SGTC, we can easily cal cu-
late the maximum possible gain. Thiswould occur if the vertex with the largest surface,
v € 5, say, were entirely surrounded by neighboursin S,,. The maximum possiblegain
isthen 2 max, ¢y dv (strictly speaking 2 max, ¢y 8% v) and similarly the minimum gain
is—2 max, ¢y dv. Thismeanswe can easily choosethe number of bucketsand scale the
gain accordingly. A problem still arises for meshes with a high grading because many
of theelementswill have an insignificant surface area compared to the maximum. How-
ever the experiments carried out here all used a scaling which allowed a maximum of
100 buckets and we have tested the algorithm with up to 10,000 buckets without signif-
icant penalty in terms either memory or run-time.

45 Resultsfor different optimisation functions

Table 6 compares SGSC against the SGTC results in Table 2. Both set of results use
template cost matching (TCM). Thetableisin the same form asthosein §3.3 and shows
that thereison average only atiny difference between thetwo (SGTCis0.5% better than
SGSC) and again, with the exception of the‘uk’ meshfor P = 16 & 32, al resultshave
an average AR of less than 1.30. This implication of thistable is that the assumption
made in §2.1, that all subdomains have approximately the same volume, is reasonably
good. However this assumption is not necessarily true, because for example, for P =
128, the ‘dime20’ mesh, with its high grading, has a ratio of max {25,/ min 25, =

2723. A possible explanation is that athough the assumption isfase globaly, it istrue
locally, since the mesh density does not change too gradually (as should be the case with
most meshes generated by adaptive refinement) and so the volume of each subdomain
is approximately equal to that of its neighbours.

Table 6. Surface gain/surface cost optimisation compared with surface gain/template cost

P=16 P =32 P — 64 P =128

r(SGSC)-1 r(SGSC)-1 r(SGSC)-1 r(SGSC)-1
mesh It 5516 [t rseron [t nsero o [t nseTo o
uk 149 102 132 105 124 102 123 092

60k 115 0.95 1.10 0.96 112 1.07 112 111
dime20 1.23 1.03 117 0.86 115 0.98 111 0.91
cA 1.20 0.90 123 1.05 124 1.03 122 0.97
mesh100 1.24 0.95 1.26 1.10 127 1.06 127 0.97
cyl3 123 1.10 122 1.08 124 1.06 122 1.00
Average 0.99 101 1.04 0.98

Againwe are not not primarily concerned with partitioningtimes, but it was surpris-
ing to see that SGSC was an average 30% slower than SGTC. A possible explanationis
that although the cost function I’ isagood approximation, I'; isamore global function
and so the optimisation converges more quickly.

5 Discussion

5.1 Comparison with cut-edge weight partitioning

In Table 7 we compare AR as produced by the edge cut partitioner (EC) described in
[19] with the resultsin Table 2. On average AR partitioning produces resultswhich are
16% better than those of the edge cut partitioner (as could be expected). However, for
themesh ‘cs4’ EC partitioningis consistently better and thisisa subject for further in-
vestigation.

Table 7. AR results for the edge cut partitioner compared with the AR partitioner

P=16 P =32 P =64 P =128

rEC) -1 rEC -1 rEC)—1 rEC)—1

mesh I rAR)—1 I rAR)—1 I AR -1 I AR -1
uk 152 109 133 107 126 109 128 114

60k 119 118 118 176 117 147 117 155
dime20 132 145 126 134 125 165 121 172
csA 119 08 121 093 120 087 121 092
mesh1001.22 089 122 091 126 103 124 086
cyl3 122 105 123 109 123 100 123 1.02
Average 1.09 1.18 1.19 1.20

Meanwhilein Table 8 we compare the edge cut produced by the EC partitioner with
that of the AR partitioner. Again as expected, EC partitioning produces the best results
(about 11% better than AR). In terms of time, the EC partitioner isabout 26% faster than
ARonaverage. Againthisisno surprisesincethe AR partitioninginvol vesfl oating point
operations (assessing cost and combining el ements) while EC partitioningonly requires
integer operations.

Table8. | E.| results for the edge cut partitioner compared with the AR partitioner

P =16 P =32 P =64 P =128

|E [(RM) 1B [(RM) |E [(RM) |2 |[(RM)
mesh Bl Thar 1Pl mar Pl mar 1Pl EaR
uk 189 092 290 0.88 478 0.88 845 0.92
t60k 974 0.97 1588 1.03 2440 1.00 3646 1.00
dime20 1326 0.82 2294 0.80 3637 0.83 5497 0.83
csA 2343 0.86 3351 0.90 4534 0.89 6101 0.90

mesh100 4577 0.77 7109 0.81 10740 0.86 14313 0.83
cyl3 10458 0.94 14986 0.94 20765 0.93 27869 0.94
Average 0.88 0.89 0.90 0.90

5.2 Generic multilevel mesh partitioning

Inthispaper we have adapted a mesh partitioningtechnique originaly designed to solve
the edge cut partitioning problem to a different cost function. The question then arises,
isthemultilevel strategy an appropriate technique for solving partitioning problems (or
indeed other optimisation problems) with different cost functions? Clearly thisisanim-
possible question to answer in general but afew pertinent remarks can be made:

— For the AR based cost functions at |east, the method seems relatively sensitiveto
whether the cost isincludedinthematching. Thissuggeststhat, if possible, ageneric
multilevel partitioner should use the cost functionto minimisethecost of thematch-
ings. Note, however, that thismay not be possibleas acost function which, say, mea-
sured the cost of a mapping onto a particular processor topology would be unable
to function since at the matching stage no partition, and hence no mapping exists.

— The optimisation relies, for efficiency at least, on having alocal gain function in
order that the migration of avertex doesnotinvolvean O(N) update. Here we were
able to localise the cost function by making a simple approximation to give alocal
gain function, however, it isnot clear that thisis aways possible.

— The bucket sort is reasonably simpleto convert to non-integer gains, however this
relies on being ableto estimate the maximum gain. If thisisnot possibleit may not
be easy to generate a good scaling which separates vertices of different gainsinto
different buckets.

5.3 Conclusion and futureresearch

We have shown that the multilevel strategy can be modified to optimise for aspect ra-
tio. To fully validate the method, however, we need to demonstrate that the measure of
aspect ratio used here does indeed provide the benefits for DD preconditionersthat the
theoretical resultssuggest. It isalso desirable to measure the correl ation between aspect
ratio and convergence in the solver.

Also, dthough parallel implementationsof themultilevel strategy do exist, e.g. [20],
itisnot clear how well AR optimisation, withitsmore global cost function, will work in
paralel and thisisanother direction for future research. Some related work already ex-
istsin the context of aparallel dynamic adaptive mesh environment, [5, 6, 16], but these
are not multilevel methods and it was necessary to use a combination of severa com-
plex cost functionsin order to achieve reasonabl e results so the question arises whether
multilevel techniques can help to overcome this.

References

1

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

S. T. Barnard and H. D. Simon. A Fast Multilevel Implementation of Recursive Spectral
Bisection for Partitioning Unstructured Problems. Concurrency: Practice & Experience,
6(2):101-117, 1994.

. S. Blazy, W. Borchers, and U. Dralle. Parallelization methods for a characteristic's pressure

correction scheme. In E. H. Hirschel, editor, Flow Smulation with High Performance Com-
putersll, Notes on Numerical Fluid Mechanics, 1995.

. N. Bouhmala. Partitioning of Unstructured Meshesfor Parallel Processing. PhD thesis, Inst.

d'Informatique, Univ. Neuchatel, 1998.

. J. H. Bramble, J. E. Pasciac, and A. H. Schatz. The Construction of Preconditionersfor El-

liptic Problems by Substructuring I+I1. Math. Comp., 47+49, 1986+87.

. R. Diekmann, B. Meyer, and B. Monien. Parallel Decomposition of Unstructured FEM-

Meshes. Concurrency: Practice & Experience, 10(1):53-72, 1998.

. R. Diekmann, F. Schlimbach, and C. Walshaw. Quality Balancing for Parallel Adaptive FEM.

To appear in Proc. Irregular ' 98.

. C. Farhat, N. Maman, and G. Brown. Mesh Partitioning for Implicit Computations via Do-

main Decomposition. Int. J. Num. Meth. Engng., 38:989-1000, 1995.

. C. Farhat, J. Mandel, and F. X. Roux. Optimal convergence properties of the FETI domain

decomposition method. Comp. Meth. Appl. Mech. Engrg., 115:367-388, 1994.

. C. M. Fiducciaand R. M. Mattheyses. A Linear Time Heuristic for Improving Network Par-

titions. In Proc. 19th |EEE Design Automation Conf., pages 175-181, |EEE, Piscataway, NJ,
1982.

A. Gupta. Fast and effective algorithms for graph partitioning and sparse matrix reordering.
IBM Journal of Research and Development, 41(1/2):171-183, 1996.

B. Hendricksonand R. Leland. A Multilevel Algorithm for Partitioning Graphs. Tech. Rep.
SAND 93-1301, SandiaNational Labs, Albuquerque, NM, 1993.

B. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning Graphs. In Proc.
Supercomputing ’ 95, 1995.

G. Karypisand V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning Ir-
regular Graphs. TR 95-035, Dept. Comp. Sci., Univ. Minnesota, Minneapolis, MN 55455,
1995.

G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs. TR
95-064, Dept. Comp. Sci., Univ. Minnesota, Minneapolis, MN 55455, 1995.

S. A. Mitchell and S. A. Vasavis. Quality Mesh Generation in Three Dimensions. In Proc.
ACM Conf. Comp Geometry, pages 212221, 1992.

F. Schlimbach. Load Balancing Heuristics Optimising Subdomain Shapesfor Adaptive Finite
Element Smulations. Diploma Thesis, Dept. Math. Comp. Sci., Univ. Paderborn, 1998.

D. Vanderstraeten, C. Farhat, P. S. Chen, R. Keunings,and O. Zone. A Retrofit Based M ethod-
ology for the Fast Generation and Optimization of Large-Scale Mesh Partitions: Beyond the
Minimum Interface Size Criterion. Comp. Meth. Appl. Mech. Engrg., 133:25-45, 1996.

D. Vanderstraeten, R. Keunings, and C. Farhat. Beyond Conventional Mesh Partitioning Al-
gorithms and the Minimum Edge Cut Criterion: Impact on Realistic Applications. In D. Bai-
ley et al, editor, Parallel Processingfor Scientific Computing, pages 611-614. SIAM, 1995.
C. Walshaw and M. Cross. Mesh Partitioning: aMultilevel Balancing and Refinement Algo-
rithm. Tech. Rep. 98/IM/35, Univ. Greenwich, London SE18 6PF, UK, March 1998.

C. Walshaw, M. Cross, and M. Everett. Parallel Dynamic Graph Partitioning for Adaptive
Unstructured Meshes. J. Par. Dist. Comput., 47(2):102—-108, 1997.

