
Multilevel Mesh Partitioning for Aspect Ratio

C. Walshaw1, M. Cross1, R. Diekmann2, and F. Schlimbach2

1 School of Computing and Mathematical Sciences, The University of Greenwich,
London, SE18 6PF, UK. fC.Walshaw, M.Crossg@gre.ac.uk

2 Department of Computer Science, University of Paderborn, Fürstenallee 11,
D-33102 Paderborn, Germany. fdiek, schlimbog@uni-paderborn.de

Abstract. Multilevel algorithms are a successful class of optimisation techniques
which address the mesh partitioning problem. They usually combine a graph con-
traction algorithm together with a local optimisation method which refines the par-
tition at each graph level. To date these algorithms have been used almost exclu-
sively to minimise the cut-edge weight, however it has been shown that for certain
classes of solution algorithm, the convergence of the solver is strongly influenced
by the subdomain aspect ratio. In this paper therefore, we modify the multilevel
algorithms in order to optimise a cost function based on aspect ratio. Several vari-
ants of the algorithms are tested and shown to provide excellent results.

1 Introduction

The need for mesh partitioning arises naturally in many finite element (FE) and finite
volume (FV) applications. Meshes composed of elements such as triangles or tetrahe-
dra are often better suited than regularly structured grids for representing completely
general geometries and resolving wide variations in behaviour via variable mesh densi-
ties. Meanwhile, the modelling of complex behaviour patterns means that the problems
are often too large to fit onto serial computers, either because of memory limitations or
computational demands, or both. Distributingthe mesh across a parallel computer so that
the computational load is evenly balanced and the data locality maximised is known as
mesh partitioning. It is well known that this problem is NP-complete, so in recent years
much attention has been focused on developing suitable heuristics, and some powerful
methods, many based on a graph corresponding to the communication requirements of
the mesh, have been devised, e.g. [12].

A particularly popular and successful class of algorithms which address this mesh
partitioning problem are known as multilevel algorithms. They usually combine a graph
contraction algorithm which creates a series of progressively smaller and coarser graphs
together with a local optimisationmethod which, starting with the coarsest graph, refines
the partition at each graph level. These algorithms have been used almost exclusively
to minimise the cut-edge weight, a cost which approximates the total communications
volume in the underlying solver. This is an important goal in any parallel application,
to minimise the communications overhead, however, it has been shown, [18], that for
certain classes of solution algorithm, the convergence of the solver is actually heavily
influenced by the shape or aspect ratio (AR) of the subdomains. In this paper therefore,
we modify the multilevel algorithms (the matching and local optimisation) in order to
optimise a cost function based on AR. We also abstract the process of modification in
order to suggest how the multilevel strategy can be modified into a generic technique
which can optimise arbitrary cost functions.



1.1 Domain decomposition preconditioners and aspect ratio

To motivate the need for aspect ratio we consider the requirements of a class of solu-
tion techniques. A natural parallel solution strategy for the underlying problem is to use
an iterative solver such as the conjugate gradient (CG) algorithm together with domain
decomposition (DD) preconditioning, e.g. [2]. DD methods take advantage of the par-
tition of the mesh into subdomains by imposing artificial boundary conditions on the
subdomain boundaries and solving the original problem on these subdomains, [4]. The
subdomain solutions are independent of each other, and thus can be determined in par-
allel without any communication between processors. In a second step, an ‘interface’
problem is solved on the inner boundaries which depends on the jump of the subdomain
solutions over the boundaries. This interface problem gives new conditions on the inner
boundaries for the next step of subdomain solution. Adding the results of the third step
to the first gives the new conjugate search direction in the CG algorithm.

The time needed by such a preconditioned CG solver is determined by two factors,
the maximum time needed by any of the subdomain solutions and the number of itera-
tions of the global CG. Both are at least partially determined by the shape of the subdo-
mains. Whilst an algorithm such as the multigridmethod as the solver on the subdomains
is relatively robust against shape, the number of global iterations are heavily influenced
by the AR of subdomains, [17]. Essentially, the subdomains can be viewed as elements
of the interface problem, [7, 8], and just as with the normal finite element method, where
the condition of the matrix system is determined by the AR of elements, the condition
of the preconditioning matrix is here dependent on the AR of subdomains.

1.2 Overview

Below, in Section 2, we introduce the mesh partitioningproblem and establish some ter-
minology. We then discuss the mesh partitioning problem as applied to AR optimisation
and describe how the graph needs to be modified to carry this out. Next, in Section 3,
we describe the multilevel paradigm and present and compare three possible matching
algorithms which take account of AR. In Section 4 we then describe a Kernighan-Lin
(KL) type iterative local optimisationalgorithm and describe two possible modifications
which aim to optimise AR. Finally in Section 5 we compare the results with a cut edge
partitioner, suggest how the multilevel strategy can be modified into a generic technique
and present some ideas for further investigation.

The principal innovations described in this paper are:

– In x2.2 we describe how the graph can be modified to take AR into account.
– In x3.2 we describe three matching algorithms based on AR.
– In x4.3 we describe two ways of using the cost function to optimise for AR.
– In x4.4 we describe how the bucket sort can be modified to take into account non-

integer gains.

2 The mesh partitioning problem

To define the mesh partitioning problem, let G = G(V;E) be an undirected graph of
vertices V , with edges E which represent the data dependencies in the mesh. We assume
that both vertices and edges can be weighted (with positive integer values) and that jvj
denotes the weight of a vertex v and similarly for edges and sets of vertices and edges.
Given that the mesh needs to be distributed to P processors, define a partition � to be a



mapping of V into P disjoint subdomains S
p

such that
S

P

S

p

= V . To evenly balance
the load, the optimal subdomain weight is given by S := djV j=P e (where the ceiling
function dxe returns the smallest integer � x) and the imbalance is then defined as the
maximum subdomain weight divided by the optimal (since the computational speed of
the underlying application is determined by the most heavily weighted processor).

The definition of the mesh-partitioning problem is to find a partition which evenly
balances the load or vertex weight in each subdomain whilst minimising some cost func-
tion � . Typically this cost function is simply the total weight of cut edges, but in this
paper we describe a cost function based on AR. A more precise definition of the mesh-
partitioning problem is therefore to find � such that S

p

� S and such that � is min-
imised.

2.1 The aspect ratio and cost function

We seek to modify the methods by optimising the partition on the basis of AR rather than
cut-edge weight. In order to do this it is necessary to define a cost function which we seek
to minimise and a logical choice would be max

p

AR(S
p

), where AR(S
p

) is the AR of
the subdomain S

p

. However maximum functions are notoriously difficult to optimise
(indeed it is for this reason that most mesh partitioning algorithms attempt to minimise
the total cut-edge weight rather than the maximum between any two subdomains) and
so instead we choose to minimise the average AR

�

AR

=

X

p

AR(S
p

)

P

: (1)

There are several definitions of AR, however, and for example, for a given poly-
gon S, a typical definition, [15], is the ratio of the largest circle which can be contained
entirely within S (inscribed circle) to the smallest circle which entirely contains S (cir-
cumcircle). However these circles are not easy to calculate for arbitrary polygons and
in an optimisation code where ARs may need to be calculated very frequently, we do
not believe this to be a practical metric. It may also fail to express certain irregularities
of shape. A careful discussion of the relative merits of different ways of measuring AR
may be found in [16] and for the purposes of this paper we follow the ideas therein and
define the AR of a given shape by measuring the ratio of its perimeter length (surface
area in 3d) over that of some ideal shape with identical area (volume in 3d).

Suppose then that in 2d the ideal shape is chosen to be a square. Given a polygon S
with area 
S and perimeter length @S, the ideal perimeter length (the perimeter length
of a square with area 
S) is 4

p


S and so the AR is defined as @S=4
p


S. Alterna-
tively, if the ideal shape is chosen to be a circle then the same argument gives the AR of
@S=2

p

�
S. In fact, given the definition of the cost function (1) it can be seen that these
two definitions will produce the same optimisationproblem (and hence the same results)
with the cost just modified by a constant C (where C = 1=4 for the square and 1=2

p

�

for circle). These definitions of AR are easily extendible to 3d and given a polyhedron
S with volume 
S and surface area @S, the AR can be calculated as C@S=(
S)2=3,
where C = 1=4 if the cube is chosen as the optimal shape and C = 1=(4�)

1=3

3

2=3 for
the sphere. Note that henceforth, in order to talk in general terms for both 2d & 3d, given
an object S we shall use the terms @S or surface for the surface area (3d) or perimeter
length (2d) of the object and 
S or volume for the volume (3d) or area (2d).



Of the above definitions of AR we choose to use the square/cube based formulae for
two reasons; firstly because we are attempting to partition a mesh into interlocking sub-
domains (and circles/spheres are not known for their interlockingqualities) and secondly
because it gives a convenient formula for the cost function of:

�template =
1

C

X

p

@S

p

(
S

p

)

d�1

d

(2)

where C = 2dP and d (= 2 or 3) is the dimension of the mesh. We refer to this cost
function as �template or �

t

because of the way it tries to match shapes to chosen templates.
In fact, it will turn out (see for example x3.2) that even this function may be too

complex for certain optimisation needs and we can define a simpler one by assuming
that all subdomains have approximately the same volume, 
S

p

� 
M=P , where 
M
is the total volume of the mesh. This assumption may not necessarily be true, but it is
likely to be true locally (see x4.5). We can then approximate (2) by

�template �
1

C

0

X

p

@S

p

(3)

where C0

= 2dP

1

d

(
M )

d�1

d . This can be simplified still further by noting that the
surface of each subdomain S

p

consists of two components, the exterior surface, @eS
p

,
where the surface of the subdomain coincides with the surface of the mesh @M , and the
interior surface, @iS

p

, where S
p

is adjacent to other subdomains and the surface cuts
through the mesh. Thus we can break the

P

p

@S

p

term in (3) into two parts
P

p

@

i

S

p

and
P

p

@

e

S

p

and simplify (3) further by noting that
P

p

@

e

S

p

is just @M , the exterior
surface of the mesh M . This then gives us a second cost function to optimise:

�surface =
1

K

1

X

p

@

i

S

p

+K

2

(4)

where K
1

= 2dP

1

d

(
M )

d�1

d and K

2

= @M=K

1

. We refer to this cost function as
�surface or �

s

because it is just concerned with optimising surfaces.

2.2 Modifying the graph

f

e

d

c
a

b f

e

d

c
a

b

E1 E2

E3
v1 v2

v3

v4 v5
V2

V3

V1

e1
e2

e3

e5e4

Fig. 1. Left to right: a simple mesh (a), its dual (b), the same mesh with combined elements (c)
and its dual (d)



To use these cost functions in a graph-partitioningcontext, we must add some additional
qualities to the graph. Figure 1 shows a very simple mesh (1a) and its dual graph (1b).
Each element of the mesh corresponds to a vertex in the graph. The vertices of the graph
can be weighted as is usual (to carry out load-balancing) but in addition, vertices store
the volume and total surface of their corresponding element (e.g.
v

1

= 
e

1

and @v
1

=

@e

1

). We also weight the edges of the graph with the size of the surface they correspond
to. Thus, in Figure 1, if D(b; c) refers to the distance between points b and c, then the
weight of edge (v

1

; v

2

) is set to D(b; c). In this way, for vertices v
i

corresponding to
elements which have no exterior surface, the sum of their edge weights is equivalent
to their surface (@v

i

=

P

E

j(v

i

; v

j

)j). Thus for vertex v

2

, @v
2

= @e

2

= D(b; c) +

D(c; e) +D(e; b) = j(v

2

; v

1

)j+ j(v

2

; v

3

)j+ j(v

2

; v

5

)j.
When it comes to combining elements together, either into subdomains, or for the

multilevel matching (x3) these properties, volume and surface can be easily combined.
Thus in Figure 1c where E

1

= e

1

+ e

4

, E
2

= e

3

+ e

5

and E
3

= e

3

we see that volumes
can be directly summed, for example 
V

1

= 
E

1

= 
e

1

+
e

4

= 
v

1

+
v

4

, as can
edge weights, e.g. j(V

1

; V

2

)j = D(b; c) +D(c; d) = j(v

1

; v

2

)j+ j(v

4

; v

5

)j. The surface
of a combined object S is the sum of the surfaces of its constituent parts less twice the
interior surface, e.g. @V

1

= @E

1

= @e

1

+@e

4

�2�D(a; c) = @v

1

+@v

1

�2j(v

1

; v

4

)j.
These properties are very similar to properties in conventional graph algorithms, where
the volume combines in the same way as weight and surfaces combine as the sum of edge
weights (although including an additional term which expresses the exterior surface @e).
The edge weights function identically.

Note that with these modifications to the graph, it can be seen that if we optimise
using the �

s

cost function (4), the AR mesh partitioning problem is identical to the cut-
edge weight mesh partitioning problem with a special edge weighting. However, the in-
clusion of non integer edge weights does have an effect on the some of the techniques
that can be used (e.g. see x4.4).

2.3 Testing the algorithms

Table 1. Test meshes
mesh no. vertices no. edges type aspect ratio mesh grading

uk 4824 6837 2d triangles 3.39 7.98e+02
t60k 60005 89440 2d triangles 1.60 2.00e+00
dime20 224843 336024 2d triangles 1.87 3.70e+03
cs4 22499 43858 3d tetrahedra 1.07 9.64e+01
mesh100 103081 200976 3d tetrahedra 1.63 2.45e+02
cyl3 232362 457853 3d tetrahedra 1.28 8.42e+00

Throughout this paper we compare the effectiveness of different approaches using a
set of test meshes. The algorithms have been implemented within the framework of JOS-
TLE, a mesh partitioning software tool developed at the University of Greenwich and
freely available for academic and research purposes under a licensing agreement (avail-
able from http://www.gre.ac.uk/˜c.walshaw/jostle). The experiments
were carried out on a DEC Alpha with a 466 MHz CPU and 1 Gbyte of memory. Due
to space considerations we only include 6 test meshes but they have been chosen to be
a representative sample of medium to large scale real-life problems and include both 2d
and 3d examples. Table 1 gives a list of the meshes and their sizes in terms of the number
of vertices and edges. The table also shows the aspect ratio of each entire mesh and the
mesh grading, which here we define as the maximum surface of any element over the
minimum surface, and these two figures give a guide as to how difficult the optimisation



may be. For example, ‘uk’ is simply a triangulation of the British mainland and hence
has a very intricate boundary and therefore a high aspect ratio. Meanwhile, ‘dime20’
which has a moderate aspect ratio, has been very heavily refined in parts and thus has
a high mesh grading – the largest element has a surface around 3,700 times larger than
that of the smallest.
Table 2. Final results using template cost matching and surface gain/template cost optimisation

P = 16 P = 32 P = 64 P = 128

mesh �

t

jE

c

j t

s

�

t

jE

c

j t

s

�

t

jE

c

j t

s

�

t

jE

c

j t

s

uk 1.48 206 0.12 1.31 331 0.12 1.23 543 0.22 1.25 917 0.50
t60k 1.16 1003 1.63 1.10 1547 2.07 1.11 2437 2.33 1.11 3647 2.65
dime20 1.22 1623 5.78 1.20 2868 5.17 1.15 4406 5.70 1.12 6620 7.57
cs4 1.22 2727 0.85 1.22 3738 0.90 1.23 5066 1.12 1.23 6747 1.60
mesh100 1.25 5950 3.20 1.24 8752 3.53 1.26 12467 4.13 1.28 17346 5.13
cyl3 1.21 11141 10.05 1.21 15944 10.77 1.23 22378 13.02 1.22 29719 13.18

Table 2 shows the results of the final combination of algorithms – TCM (see x3.2)
and SGTC (see x4.3) – which were chosen as a benchmark for the other combinations.
For the 4 different values of P (the number of subdomains), the table shows the average
aspect ratio as given by �

t

, the edge cut jE
c

j (that is the number of cut edges, not the
weight of cut edges weighted by surface size) and the time in seconds, t

s

, to partition
the mesh. Notice that with the exception of the ‘uk’ mesh, all partitions have average
aspect ratios of less than 1.30 which is well within the target range suggested in [6].
Indeed for the ‘uk’ mesh it is no surprise that the results are not optimal because the
subdomains inherit some of the poor AR from the original mesh (which has an AR of
3.39) and it is only when the mesh is split into small enough pieces, P = 64 or 128, that
the optimisation succeeds in ameliorating this effect. Intuitively this also gives a hint as
to why DD methods are a very successful technique as a solver.

3 The multilevel paradigm

In recent years it has been recognised that an effective way of both speeding up partition
refinement and, perhaps more importantly giving it a global perspective is to use multi-
level techniques. The idea is to match pairs of vertices to form clusters, use the clusters to
define a new graph and recursively iterate this procedure until the graph size falls below
some threshold. The coarsest graph is then partitioned and the partition is successively
optimised on all the graphs starting with the coarsest and ending with the original. This
sequence of contraction followed by repeated expansion/optimisation loops is known as
the multilevel paradigm and has been successfully developed as a strategy for overcom-
ing the localised nature of the KL (and other) optimisation algorithms. The multilevel
idea was first proposed by Barnard & Simon, [1], as a method of speeding up spectral
bisection and improved by Hendrickson & Leland, [11], who generalised it to encom-
pass local refinement algorithms. Several algorithms for carrying out the matching have
been devised by Karypis & Kumar, [13], while Walshaw & Cross describe a method for
utilising imbalance in the coarsest graphs to enhance the final partition quality, [19].

3.1 Implementation

Graph contraction. To create a coarser graph G
l+1

(V

l+1

; E

l+1

) from G

l

(V

l

; E

l

) we
use a variant of the edge contraction algorithm proposed by Hendrickson & Leland,



[11]. The idea is to find a maximal independent subset of graph edges, or a matching
of vertices, and then collapse them. The set is independent because no two edges in
the set are incident on the same vertex (so no two edges in the set are adjacent), and
maximal because no more edges can be added to the set without breaking the indepen-
dence criterion. Having found such a set, each selected edge is collapsed and the vertices,
u

1

; u

2

2 V

l

say, at either end of it are merged to form a new vertex v 2 V

l+1

with weight
jvj = ju

1

j+ ju

2

j.
The initial partition. Having constructed the series of graphs until the number of

vertices in the coarsest graph is smaller than some threshold, the normal practice of the
multilevel strategy is to carry out an initial partition. Here, following the idea of Gupta,
[10], we contract until the number of vertices in the coarsest graph is the same as the
number of subdomains, P , and then simply assign vertex i to subdomain S

i

. Unlike
Gupta, however, we do not carry out repeated expansion/contractioncycles of the coars-
est graphs to find a well balanced initial partition but instead, since our optimisation al-
gorithm incorporates balancing, we commence on the expansion/optimisationsequence
immediately.

Partition expansion. Having optimised the partition on a graph G

l

, the partition
must be interpolated onto its parent G

l�1

. The interpolation itself is a trivial matter; if
a vertex v 2 V

l

is in subdomain S
p

then the matched pair of vertices that it represents,
v

1

; v

2

2 V

l�1

, will be in S
p

.

3.2 Incorporating aspect ratio

The matching part of the multilevel strategy can be easily modified in several ways to
take into account AR and in each case the vertices are visited (at most once) using a
randomly ordered linked list. Each vertex is then matched with an unmatched neighbour
using the chosen matching algorithm and it and its match removed from the list. Vertices
with no unmatched neighbours remain unmatched and are also removed. In addition to
Random Matching (RM), [12], where vertices are matched with random neighbours,
we propose and have tested 3 matching algorithms:

Surface Matching (SM). As we have seen in x2.2, the AR partitioning problem can
be approximated by the cut-edge weight problem using (4), the �

s

cost function, and
so the simplest matching is to use the Heavy Edge approach of Karypis & Kumar, [13],
where the vertex matches across the heaviest edge to any of its unmatched neighbours.
This is the same as matching across the largest surface (since here edge weights represent
surfaces) and we refer to this as surface matching.

Template Cost Matching (TCM). A second approach follows the ideas of Bouh-
mala, [3], and matches with the neighbour which minimises the cost function. In this
case, the chosen vertex matches with the unmatched neighbour which gives the result-
ing element the best aspect ratio. Using the �

t

cost function, we refer to this as template
cost matching.

Surface Cost Matching (SCM). This is the same idea as TCM only using the �
s

cost function, (4), which is faster to calculate.

3.3 Results for different matching functions

In Tables 3, 4 & 5 we compare the results in Table 2, where TCM was used, with RM, SM
& SCM respectively. In all cases the SGTC optimisation algorithm (see x4.3) was used.
For each value of P , the first column shows the average AR, �

t

of the partitioning. The
second column for each value of P then compares results with those in Table 2 using the



metric � (RM)�1

� (TCM)�1

for RM, etc. Thus a figure > 1 means that RM has produced worse

results than TCM. These comparisons are then averaged and so it can be seen, e.g. for
P = 16 that RM produces results 24% (1.24) worse on average than TCM. Indeed the
average quality of partitions produced by RM was 30% worse than TCM. This is not
altogether surprising since the AR of elements in the coarsest graph could be very poor
if the matching takes no account of it, and hence the optimisationhas to work with badly
shaped elements.

Table 3. Random matching results compared with template cost matching

P = 16 P = 32 P = 64 P = 128

mesh �

t

� (RM)�1

� (TCM)�1

�

t

� (RM)�1

� (TCM)�1

�

t

� (RM)�1

� (TCM)�1

�

t

� (RM)�1

� (TCM)�1

uk 1.50 1.04 1.38 1.25 1.25 1.06 1.23 0.91
t60k 1.20 1.28 1.16 1.59 1.17 1.53 1.17 1.54
dime20 1.30 1.37 1.31 1.57 1.27 1.79 1.23 1.89
cs4 1.29 1.31 1.27 1.21 1.30 1.30 1.26 1.15
mesh100 1.31 1.24 1.29 1.24 1.31 1.19 1.32 1.15
cyl3 1.25 1.19 1.25 1.19 1.26 1.15 1.27 1.22
Average 1.24 1.34 1.34 1.31

When it comes to comparing TCM with SM & SCM (Tables 4 & 5) there is actually
very little difference; SM is about 3.5% worse and SCM only about 1.5%. This suggests
that the multilevel strategy is relatively robust to the matching algorithm provided the
AR is taken into account in some way.

Table 4. Surface matching results compared with template cost matching

P = 16 P = 32 P = 64 P = 128

mesh �

t

� (SM)�1

� (TCM)�1

�

t

� (SM)�1

� (TCM)�1

�

t

� (SM)�1

� (TCM)�1

�

t

� (SM)�1

� (TCM)�1

uk 1.54 1.13 1.34 1.11 1.24 1.01 1.28 1.10
t60k 1.14 0.87 1.11 1.05 1.12 1.10 1.12 1.08
dime20 1.26 1.18 1.24 1.23 1.15 1.00 1.13 1.04
cs4 1.22 0.97 1.24 1.08 1.24 1.04 1.23 1.00
mesh100 1.20 0.78 1.24 1.03 1.27 1.04 1.26 0.94
cyl3 1.19 0.93 1.21 1.02 1.24 1.05 1.24 1.08
Average 0.98 1.08 1.04 1.04

Table 5. Surface cost matching results compared with template cost matching

P = 16 P = 32 P = 64 P = 128

mesh �

t

� (SCM)�1

� (TCM)�1

�

t

� (SCM)�1

� (TCM)�1

�

t

� (SCM)�1

� (TCM)�1

�

t

� (SCM)�1

� (TCM)�1

uk 1.47 0.99 1.31 1.00 1.27 1.14 1.25 0.98
t60k 1.11 0.69 1.10 0.99 1.14 1.23 1.13 1.14
dime20 1.23 1.06 1.18 0.91 1.14 0.93 1.13 1.02
cs4 1.23 1.04 1.23 1.04 1.24 1.03 1.23 1.00
mesh100 1.23 0.91 1.25 1.07 1.25 0.99 1.27 0.97
cyl3 1.22 1.06 1.23 1.10 1.23 1.02 1.24 1.06
Average 0.96 1.02 1.05 1.03

We are not primarily concerned with partitioning times here, but for the record, RM
was about 0.5% slower than TCM (although this is well within the limits of noise). This
is because the optimisation stage took considerably longer (although the matching was



much faster than TCM). SM & SCM were 3.3% & 1.8% faster respectively than TCM.
Overall this suggests that TCM is the algorithm of choice although there is little benefit
over SM & SCM.

4 The Kernighan-Lin optimisation algorithm

In this section we discuss the key features of an optimisation algorithm, fully described
in [19] and then in x4.3 describe how it can be modified to optimise for AR. It is a
Kernighan-Lin (KL) type algorithm incorporating a hill-climbing mechanism to enable
it to escape from local minima. The algorithm uses bucket sorting (x4.4), the linear time
complexity improvement of Fiduccia & Mattheyses, [9], and is a partition optimisation
formulation; in other words it optimises a partition of P subdomains rather than a bisec-
tion.

4.1 The gain function

A key concept in the method is the idea of gain. The gain g(v; q) of a vertex v in sub-
domain S

p

can be calculated for every other subdomain, S
q

, q 6= p, and expresses how
much the cost of a given partition would be improved were v to migrate to S

q

. Thus,
if � denotes the current partition and �0 the partition if v migrates to S

q

then for a cost
function� , the gain g(v; q) = � (�

0

)�� (�). Assuming the migration of v only affects
the cost of S

p

and S
q

(as is true for �
t

and �
s

) then we get

g(v; q) = AR(S
q

+ v) � AR(S
q

) + AR(S
p

� v) � AR(S
p

): (5)

For �
t

this gives an expression which cannot be further simplified, however, for �
s

,
since

AR(S
q

+ v) � AR(S
q

) =

1

K

1

�

@

i

(S

q

+ v) � @

i

S

q

	

=

1

K

1

�

@

i

S

q

+ @

i

v � 2j(S

q

; v)j � @

i

S

q

	

=

1

K

1

�

@

i

v � 2j(S

q

; v)j

	

(where j(S
q

; v)j denotes the sum of edge weights between S
q

and v), we get

gsurface(v; q) =
2

K

1

fj(S

p

; v)j � j(S

q

; v)jg (6)

Notice in particular that gsurface is the same as the cut-edge weight gain function and that it
is entirely localised, i.e. the gain of a vertex only depends on the length of its boundaries
with a subdomain and not on any intrinsic qualities of the subdomain which could be
changed by non-local migration.

4.2 The iterative optimisation algorithm

The serial optimisation algorithm, as is typical for KL type algorithms, has inner and
outer iterative loops with the outer loop terminating when no migration takes place dur-
ing an inner loop. The optimisation uses two bucket sorting structures or bucket trees



(see below, x4.4) and is initialised by calculating the gain for all border vertices and in-
serting them into one of the bucket trees. These vertices will subsequently be referred to
as candidate vertices and the tree containing them as the candidate tree.

The inner loop proceeds by examining candidate vertices, highest gain first (by al-
ways picking vertices from the highest ranked bucket), testing whether the vertex is ac-
ceptable for migration and then transferring it to the other bucket tree (the tree of exam-
ined vertices). This inner loop terminates when the candidate tree is empty although it
may terminate early if the partition cost (i.e. the number of cut edges) rises too far above
the cost of the best partition found so far. Once the inner loop has terminated any vertices
remaining in the candidate tree are transferred to the examined tree and finally pointers
to the two trees are swapped ready for the next pass through the inner loop.

The algorithm also uses a KL type hill-climbing strategy; in other words vertex mi-
gration from subdomain to subdomain can be accepted even if it degrades the parti-
tion quality and later, based on the subsequent evolution of the partition, either rejected
or confirmed. During each pass through the inner loop, a record of the optimal parti-
tion achieved by migration within that loop is maintained together with a list of vertices
which have migrated since that value was attained. If subsequent migration finds a ‘bet-
ter’ partition then the migration is confirmed and the list is reset. Once the inner loop
is terminated, any vertices remaining in the list (vertices whose migration has not been
confirmed) are migrated back to the subdomains they came from when the optimal cost
was attained.

The algorithm, together with conditions for vertex migration acceptance and confir-
mation is fully described in [19].

4.3 Incorporating aspect ratio: localisation

One of the advantages of using cut-edge weight as a cost function is its localised nature.
When a graph vertex migrates from one subdomain to another, only the gains of adja-
cent vertices are affected. In contrast, when using the graph to optimise AR, if a vertex v
migrates from S

p

to S
q

, the volume and surface of both subdomains will change. This in
turn means that, when using the template cost function (2), the gain of all border vertices
both within and abutting subdomains S

p

and S
q

will change. Strictly speaking, all these
gains should be adjusted with the huge disadvantage that this may involve thousands of
floating point operations and hence be prohibitively expensive. As an alternative, there-
fore, we propose two localised variants:

Surface Gain/Surface Cost (SGSC). The simplest way to localise the updating of
the gains is to make the assumption in x2.1 that the subdomains all have approximately
equal volume and to use the surface cost function�

s

from (4). As mentioned in x2.2 the
problem immediately reduces to the cut-edge weight problem, albeit with non-integer
edge weights, and from (6) only the gains of the vertices adjacent to the migrating vertex
will need updating. However, if this assumption is not true, it is not clear how well �

s

will optimise the AR and below we provide some experimental results.
Surface Gain/Template Cost (SGTC). The second method we propose for localis-

ing the updates of gain relies on the observation that the gain is simply used as a method
of rating the elements so that the algorithm always visits those with highest gain first
(using the bucket sort). It is not clear how crucial this rating is to the success of the al-
gorithm and indeed Karypis & Kumar demonstrated that (at least when optimising for
cut-edge weight) almost as good results can be achieved by simply visiting the vertices
in random order, [14]. We therefore propose approximating the gain with the surface cost
function�

s

from (4) to rate the elements and store them in the bucket tree structure, but



using the template cost function �
t

from (2) to assess the change in cost when actually
migrating an element. This localises the gain function.

4.4 Incorporating aspect ratio: bucket sorting with non-integer gains

The bucket sort is an essential tool for the efficient and rapid sorting and adjustment of
vertices by their gain. The concept was first suggested by Fiduccia & Mattheyses in [9]
and the idea is that all vertices of a given gain g are placed together in a ‘bucket’ which
is ranked g. Finding a vertex with maximum gain then simply consists of finding the
(non-empty) bucket with the highest rank and picking a vertex from it. If the vertex is
subsequently migrated from one subdomain to another then the gains of any affected
vertices have to be adjusted and the list of vertices which are candidates for migration
resorted by gain. Using a bucket sort for this operation simply requires recalculating the
gains and transferring the affected vertices to the appropriate buckets. If a bucket sort
were not used and, say, the vertices were simply stored in a list in gain order, then the
entire list would require resorting (or at least merge-sorting with the sorted list of ad-
justed vertices), an essentially O(N ) operation for every migration.

The implementation of the bucket sort is fully described in [19]. It includes a ranking
for prioritising vertices for migration which incorporates their weight as well as their
gain. The non-empty buckets are stored in a binary-tree to save excessive memory use
(since we do not know a priori how many buckets will be needed) and this structure is
referred to above as a bucket tree.

The only difficulty in adapting this procedure to AR optimisation is that with non-
integer edge weight, the gains are also real non-integer numbers. This is not a major
problem in itself as we can just give buckets an interval of gains rather than a single in-
teger, i.e. the bucket ranked 1 could contain any vertex with gain in the interval [1:0; 2:0).
However, if using the surface gain function, the issue of scaling then arises since for a
mesh entirely contained within the unit square/cube, all the vertices are likely to end up
in one of two buckets (dependent only on whether they have positive or negative gains).
Fortunately, if using �

s

as a gain function, as in SGSC and SGTC, we can easily calcu-
late the maximum possible gain. This would occur if the vertex with the largest surface,
v 2 S

p

say, were entirely surrounded by neighbours in S
q

. The maximum possible gain
is then 2max

v2V

@v (strictly speaking 2max

v2V

@

i

v) and similarly the minimum gain
is�2max

v2V

@v. This means we can easily choose the number of buckets and scale the
gain accordingly. A problem still arises for meshes with a high grading because many
of the elements will have an insignificant surface area compared to the maximum. How-
ever the experiments carried out here all used a scaling which allowed a maximum of
100 buckets and we have tested the algorithm with up to 10,000 buckets without signif-
icant penalty in terms either memory or run-time.

4.5 Results for different optimisation functions

Table 6 compares SGSC against the SGTC results in Table 2. Both set of results use
template cost matching (TCM). The table is in the same form as those in x3.3 and shows
that there is on average only a tiny difference between the two (SGTC is 0.5% better than
SGSC) and again, with the exception of the ‘uk’ mesh for P = 16 & 32, all results have
an average AR of less than 1.30. This implication of this table is that the assumption
made in x2.1, that all subdomains have approximately the same volume, is reasonably
good. However this assumption is not necessarily true, because for example, for P =

128, the ‘dime20’ mesh, with its high grading, has a ratio of max
S

p

=min
S

p

=



2723. A possible explanation is that although the assumption is false globally, it is true
locally, since the mesh density does not change too gradually (as should be the case with
most meshes generated by adaptive refinement) and so the volume of each subdomain
is approximately equal to that of its neighbours.

Table 6. Surface gain/surface cost optimisation compared with surface gain/template cost

P = 16 P = 32 P = 64 P = 128

mesh �

t

� (SGSC)�1

� (SGTC)�1

�

t

� (SGSC)�1

� (SGTC)�1

�

t

� (SGSC)�1

� (SGTC)�1

�

t

� (SGSC)�1

� (SGTC)�1

uk 1.49 1.02 1.32 1.05 1.24 1.02 1.23 0.92
t60k 1.15 0.95 1.10 0.96 1.12 1.07 1.12 1.11
dime20 1.23 1.03 1.17 0.86 1.15 0.98 1.11 0.91
cs4 1.20 0.90 1.23 1.05 1.24 1.03 1.22 0.97
mesh100 1.24 0.95 1.26 1.10 1.27 1.06 1.27 0.97
cyl3 1.23 1.10 1.22 1.08 1.24 1.06 1.22 1.00
Average 0.99 1.01 1.04 0.98

Again we are not not primarily concerned with partitioning times, but it was surpris-
ing to see that SGSC was an average 30% slower than SGTC. A possible explanation is
that although the cost function�

s

is a good approximation,�
t

is a more global function
and so the optimisation converges more quickly.

5 Discussion

5.1 Comparison with cut-edge weight partitioning

In Table 7 we compare AR as produced by the edge cut partitioner (EC) described in
[19] with the results in Table 2. On average AR partitioning produces results which are
16% better than those of the edge cut partitioner (as could be expected). However, for
the mesh ‘cs4’ EC partitioning is consistently better and this is a subject for further in-
vestigation.

Table 7. AR results for the edge cut partitioner compared with the AR partitioner

P = 16 P = 32 P = 64 P = 128

mesh �

t

� (EC)�1

� (AR)�1

�

t

� (EC)�1

� (AR)�1

�

t

� (EC)�1

� (AR)�1

�

t

� (EC)�1

� (AR)�1

uk 1.52 1.09 1.33 1.07 1.26 1.09 1.28 1.14
t60k 1.19 1.18 1.18 1.76 1.17 1.47 1.17 1.55
dime20 1.32 1.45 1.26 1.34 1.25 1.65 1.21 1.72
cs4 1.19 0.86 1.21 0.93 1.20 0.87 1.21 0.92
mesh100 1.22 0.89 1.22 0.91 1.26 1.03 1.24 0.86
cyl3 1.22 1.05 1.23 1.09 1.23 1.00 1.23 1.02
Average 1.09 1.18 1.19 1.20

Meanwhile in Table 8 we compare the edge cut produced by the EC partitioner with
that of the AR partitioner. Again as expected, EC partitioning produces the best results
(about 11% better than AR). In terms of time, the EC partitioner is about 26% faster than
AR on average. Again this is no surprise since the AR partitioninginvolves floating point
operations (assessing cost and combining elements) while EC partitioningonly requires
integer operations.



Table 8. jE
c

j results for the edge cut partitioner compared with the AR partitioner

P = 16 P = 32 P = 64 P = 128

mesh jE

c

j

jE

c

j(RM)

jE

c

j(AR)

jE

c

j

jE

c

j(RM)

jE

c

j(AR)

jE

c

j

jE

c

j(RM)

jE

c

j(AR)

jE

c

j

jE

c

j(RM)

jE

c

j(AR)

uk 189 0.92 290 0.88 478 0.88 845 0.92
t60k 974 0.97 1588 1.03 2440 1.00 3646 1.00
dime20 1326 0.82 2294 0.80 3637 0.83 5497 0.83
cs4 2343 0.86 3351 0.90 4534 0.89 6101 0.90
mesh100 4577 0.77 7109 0.81 10740 0.86 14313 0.83
cyl3 10458 0.94 14986 0.94 20765 0.93 27869 0.94
Average 0.88 0.89 0.90 0.90

5.2 Generic multilevel mesh partitioning

In this paper we have adapted a mesh partitioning technique originallydesigned to solve
the edge cut partitioning problem to a different cost function. The question then arises,
is the multilevel strategy an appropriate technique for solving partitioning problems (or
indeed other optimisation problems) with different cost functions? Clearly this is an im-
possible question to answer in general but a few pertinent remarks can be made:

– For the AR based cost functions at least, the method seems relatively sensitive to
whether the cost is included in the matching. This suggests that, if possible, a generic
multilevel partitioner should use the cost function to minimise the cost of the match-
ings. Note, however, that this may not be possible as a cost function which, say, mea-
sured the cost of a mapping onto a particular processor topology would be unable
to function since at the matching stage no partition, and hence no mapping exists.

– The optimisation relies, for efficiency at least, on having a local gain function in
order that the migration of a vertex does not involve anO(N ) update. Here we were
able to localise the cost function by making a simple approximation to give a local
gain function, however, it is not clear that this is always possible.

– The bucket sort is reasonably simple to convert to non-integer gains, however this
relies on being able to estimate the maximum gain. If this is not possible it may not
be easy to generate a good scaling which separates vertices of different gains into
different buckets.

5.3 Conclusion and future research

We have shown that the multilevel strategy can be modified to optimise for aspect ra-
tio. To fully validate the method, however, we need to demonstrate that the measure of
aspect ratio used here does indeed provide the benefits for DD preconditioners that the
theoretical results suggest. It is also desirable to measure the correlation between aspect
ratio and convergence in the solver.

Also, although parallel implementations of the multilevel strategy do exist, e.g. [20],
it is not clear how well AR optimisation, with its more global cost function, will work in
parallel and this is another direction for future research. Some related work already ex-
ists in the context of a parallel dynamic adaptive mesh environment, [5, 6, 16], but these
are not multilevel methods and it was necessary to use a combination of several com-
plex cost functions in order to achieve reasonable results so the question arises whether
multilevel techniques can help to overcome this.



References

1. S. T. Barnard and H. D. Simon. A Fast Multilevel Implementation of Recursive Spectral
Bisection for Partitioning Unstructured Problems. Concurrency: Practice & Experience,
6(2):101–117, 1994.

2. S. Blazy, W. Borchers, and U. Dralle. Parallelization methods for a characteristic’s pressure
correction scheme. In E. H. Hirschel, editor, Flow Simulation with High Performance Com-
puters II, Notes on Numerical Fluid Mechanics, 1995.

3. N. Bouhmala. Partitioning of UnstructuredMeshes for Parallel Processing. PhD thesis, Inst.
d’Informatique, Univ. Neuchatel, 1998.

4. J. H. Bramble, J. E. Pasciac, and A. H. Schatz. The Construction of Preconditioners for El-
liptic Problems by Substructuring I+II. Math. Comp., 47+49, 1986+87.

5. R. Diekmann, B. Meyer, and B. Monien. Parallel Decomposition of Unstructured FEM-
Meshes. Concurrency: Practice & Experience, 10(1):53–72, 1998.

6. R. Diekmann, F. Schlimbach, and C. Walshaw. Quality Balancing for Parallel Adaptive FEM.
To appear in Proc. Irregular ’98.

7. C. Farhat, N. Maman, and G. Brown. Mesh Partitioning for Implicit Computations via Do-
main Decomposition. Int. J. Num. Meth. Engng., 38:989–1000, 1995.

8. C. Farhat, J. Mandel, and F. X. Roux. Optimal convergence properties of the FETI domain
decomposition method. Comp. Meth. Appl. Mech. Engrg., 115:367–388, 1994.

9. C. M. Fiduccia and R. M. Mattheyses. A Linear Time Heuristic for Improving Network Par-
titions. In Proc. 19th IEEE Design Automation Conf., pages 175–181, IEEE, Piscataway, NJ,
1982.

10. A. Gupta. Fast and effective algorithms for graph partitioning and sparse matrix reordering.
IBM Journal of Research and Development, 41(1/2):171–183, 1996.

11. B. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning Graphs. Tech. Rep.
SAND 93-1301, Sandia National Labs, Albuquerque, NM, 1993.

12. B. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning Graphs. In Proc.
Supercomputing ’95, 1995.

13. G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning Ir-
regular Graphs. TR 95-035, Dept. Comp. Sci., Univ. Minnesota, Minneapolis, MN 55455,
1995.

14. G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs. TR
95-064, Dept. Comp. Sci., Univ. Minnesota, Minneapolis, MN 55455, 1995.

15. S. A. Mitchell and S. A. Vasavis. Quality Mesh Generation in Three Dimensions. In Proc.
ACM Conf. Comp Geometry, pages 212–221, 1992.

16. F. Schlimbach. Load Balancing Heuristics Optimising Subdomain Shapes for Adaptive Finite
Element Simulations. Diploma Thesis, Dept. Math. Comp. Sci., Univ. Paderborn, 1998.

17. D. Vanderstraeten,C. Farhat, P. S. Chen, R. Keunings, and O. Zone. A Retrofit Based Method-
ology for the Fast Generation and Optimization of Large-Scale Mesh Partitions: Beyond the
Minimum Interface Size Criterion. Comp. Meth. Appl. Mech. Engrg., 133:25–45, 1996.

18. D. Vanderstraeten, R. Keunings, and C. Farhat. Beyond Conventional Mesh Partitioning Al-
gorithms and the Minimum Edge Cut Criterion: Impact on Realistic Applications. In D. Bai-
ley et al, editor, Parallel Processing for Scientific Computing, pages 611–614. SIAM, 1995.

19. C. Walshaw and M. Cross. Mesh Partitioning: a Multilevel Balancing and Refinement Algo-
rithm. Tech. Rep. 98/IM/35, Univ. Greenwich, London SE18 6PF, UK, March 1998.

20. C. Walshaw, M. Cross, and M. Everett. Parallel Dynamic Graph Partitioning for Adaptive
Unstructured Meshes. J. Par. Dist. Comput., 47(2):102–108, 1997.


