
1

Evaluation of the JOSTLE mesh partitioning code for practical

multiphysics applications

K. McManus

�

, C. Walshaw

�

, M. Cross, P. Leggett, and S. Johnson

Parallel Processing Group, Centre for Numerical Modelling & Process Analysis,

University of Greenwich, London, SE18 6PF.

email: [k.mcmanus, ..]@gre.ac.uk ; URL: http://www.gre.ac.uk/~[k.mcmanus, ..]

The use of unstructured mesh codes on parallel machines is one of the most e�ective

ways to solve large computational mechanics problems. Completely general geometries

and complex behaviour can be modelled and, in principle, the inherent sparsity of many

such problems can be exploited to obtain excellent parallel e�ciences. However, unlike

their structured counterparts, the problem of distributing the mesh across the memory

of the machine, whilst minimising the amount of interprocessor communication, must be

carefully addressed. This process is an overhead that is not incurred by a serial code, but

is shown to be rapidly computable at run time and tailored for the machine being used.

1. INTRODUCTION

Multiphysics simulations integrate the solution of interacting physical processes to solve

complex inhomogeneous models, such as, metals casting and aeroelasticity. The University

of Greenwich is developing a three dimensional unstructured mesh code, PHYSICA [3],

which brings together into one toolkit the modelling of many processes such as:

turbulent multiphase
uid
ow

phase changes (i.e. melting/solidi�cation)

free surface
ows

uid-structure interaction

magnetohydrodynamics

elasto-viscoplasticity

structural dynamics

contact analysis

This code is being parallelised for Distributed Memory Multi Instruction Multi Data (DM

MIMD) architectures using explicit message passing in Fortran77 [5].

Partitioning of an unstructured mesh into P partitions that are mapped to P processors

is well known to be NP complete. Many methods have been developed that partition a

graph corresponding to the communication requirements of the mesh. A new method for

solving this graph-partitioning problem has been devised at the University of Greenwich

and encapsulated in a software tool, JOSTLE [7]. It employs a combination of techniques

�

Sponsored by the Engineering and Physical Science Research Council.

2

to give a rapid initial partition together with a clustering technique to further speed up

the process. The resulting partitioning method is designed to work e�ciently in parallel as

well as sequentially and can be applied to both static and dynamically re�ned meshes. In

this paper we present results obtained by the JOSTLE procedure for parallel multiphysics

applications on unstructured meshes.

2. THE JOSTLE MESH-PARTITIONING CODE

The underlying strategy of the JOSTLE code is based on the continuing trends of

research issues and computing resources. As mesh and machine sizes grow, the need

for parallel load-balancing becomes increasingly acute. For small meshes (N nodes) and

small machines (P processors), an order N overhead for the mesh partitioning may be

considered reasonable. However, for large N and P , this order of overhead will rapidly

become unacceptable if the solver is running at O(N=P).

In addition, it is often the case that the mesh is already distributed across the memory

of the parallel machine. For example, parallel mesh generation codes or solvers which use

parallel adaptive re�nement give rise to such distributed meshes, and in these cases it is

extremely expensive to transfer the whole mesh back to a single processor for sequential

load-balancing, if indeed the memory of that processor allows it.

To tackle these issues e�ciently, the strategy developed here is to derive a partition

as quickly and cheaply as possible, distribute the mesh and then optimise the partition

in parallel. If the mesh is already distributed then the existing partition is used and

optimisation can commence immediately. Experiments, on graphs with up to a million

nodes, indicate that the JOSTLE procedure is up to an order of magnitude faster than

existing state-of-the-art techniques such as Multilevel Recursive Spectral Bisection [1].

2.1. Topology mapping

A pertinent but often ignored factor in parallel processing is the underlying topology of

the machine's interconnection network. Even on machines with small numbers of proces-

sors, it is possible to detect variations between the latencies of processors which are closely

linked and those which are `far apart'. Although most machines now have facilities for

passing messages between two non-adjacent processors without interrupting intermediate

processors, high contention of the interprocessor links can result if adjacent partitions are

mapped to, say, opposite corners of a processor array. As the trend towards massively

parallel machines continues, these e�ects are likely to be exacerbated and machine topolo-

gies will have an increasingly important e�ect on the parallel overhead arising from any

given partition. Most of the current generation of mesh partitioning algorithms, however,

take no account of the machine topology. The mapping to the machine is either treated as

a post-processing step, applied after the data has been partitioned, or even ignored. For

machines with small numbers of processors this may be a legitimate simpli�cation, but as

machine sizes increase it is likely that a poor mapping will cause signi�cant performance

degradation.

We use an undirected graph G(N;E), of N nodes & E edges, to represent the data

dependencies arising from the unstructured mesh. Any partition of G produces a graph S

describing sub-domain connectivity and loosely the mapping problem can be thought of as

the placing of this S onto the processor topology such that the communication overhead

3

is minimised. Figure 1 shows three possible partitions of a mesh along with the resulting

sub-domain graphs S. We concentrate here on mapping onto a grid topology where we

assume that the processors are connected as a 1D, 2D or 3D array. This is a realistic

restriction as grids can be found in some of the current range of parallel machines such

as the Intel Paragon (2D) or Cray T3D (3D).

(a)

(b)

(c)

Figure 1. Partitions of a 2D mesh into (a) 1D, (b) 2D and (c) uniform topologies with

the corresponding sub-domain connectivity graphs.

2.2. The initial partition

The aim of the initial partitioning is to divide up the graph as rapidly as possible

prior to optimisation, where most of the work takes place. We use two di�erent initial

partitioning algorithms; the Greedy Algorithm ignores the processor topology completely,

whilst the other, Geometric sorting, does a very crude mapping onto a processor grid.

The Greedy algorithm used here is a simple variant of that originally proposed by Farhat

and fully described in [4]. This is clearly seen to be the fastest graph-based method as it

only visits each graph edge once. However, it takes no account of the processor topology.

The variant employed here di�ers from that proposed by Farhat in that it works solely

with a graph rather than the nodes and elements of a �nite element mesh.

Geometric sorting is a simple and intuitive algorithm which partitions solely on the

4

geometric coordinates of the nodes. Thus, to map a graph onto an p � q processor grid

(where p � q) the nodes are �rst sorted by x-coordinate, say, and split into p sets each

of weight N=p. The nodes of each of these sets are then sorted by y-coordinate and split

into sets of N=pq. Of course, neglecting connectivity information may result in a very

poor quality partition and/or mapping. However if nodes which are adjacent in the graph

are also adjacent geometrically, as is frequently the case in graphs arising from �nite

element/�nite volume discretisations, it can be very successful.

2.3. Optimisation methods

The two optimisation methods outlined here have di�erent aims; uniform optimisation

treats the processor topology as uniform and tries to minimise the number of interpro-

cessor cut-edges. Grid optimisation, on the other hand, treats the processor topology as

a grid and attempts to optimise the mapping by eliminating non-local communications.

The uniform optimisation algorithm is fully described in [6] where it is seen that a

key part of the technique is the way in which each sub-domain tries to minimise its own

surface energy. In the physical 2D or 3D world the object with the smallest surface to

volume ratio is the circle or sphere. Thus the idea behind the sub-domain heuristic is to

determine the centre of each sub-domain (in some graph sense) and to then measure the

radial distance from the centre to the edges and attempt to minimise this by migrating

nodes which are furthest from the centre. The code �nally decides which nodes to migrate

based on a combination of radial distance, load-imbalance and the change in cut-edges.

The grid optimisation algorithm is based very much on the uniform optimisation algo-

rithm with some minor changes and a more appropriate method for minimising the surface

energy. After some experimentation it was found that using the radial distance as a basis

for migrating nodes which are far from the sub-domain centre was simply not appropriate

for achieving a grid mapping, as nodes which are relatively far away from the centre of

the sub-domain may be well placed for the topology mapping. To see this, consider a

partition for a 1D processor array as in Figure 1(a) where the partition preserving the

topology is just a series of strips. Migrating nodes which are far away from the centre of

the sub-domain (i.e. at the extremes of each strip) does not preserve the partition as a 1D

array. If however, we attempt to minimise the width of each strip, rather than the radial

distance, we do �nd that the partition can preserve the machine topology. Thus, instead

of measuring the radial distance of the sub-domain, we measure (in a graph sense) the

distance between the borders with processor on the left and the processor on the right.

This technique can be extended to higher dimensional arrays by each processor classifying

the other processors as lying, in the 2D case, to either the north, south, east or west, with

processors lying on a diagonal falling into two sets [6].

2.4. Mapping strategies

Table 1 describes the four mapping strategies tested. The unmapped partition com-

pletely ignores the processor topology to give a near optimal partition for a uniform

topology as in Figure 1(c). The postmapped partition is the unmapped partition remapped

to the processors with a processor allocation algorithm applied post-partitioning. This

algorithm continually swaps sub-domains between processors until no further improve-

ment in the map cost is possible. The premapped partitioning method works the other

way round; the graph is initially mapped, albeit crudely, onto the processor grid and then

5

Table 1

Mapping strategies

Strategy Initial partition Optimisation Processor allocation

Unmapped Greedy Uniform No

Postmapped Greedy Uniform Yes

Premapped Geometric sort Uniform No

Mapped Geometric sort Grid No

optimised to minimise the number of interprocessor cut-edges. Because the �nal parti-

tion does not deviate far from the initial partition the resulting sub-domain graph still

`�ts' reasonably well onto the processor grid. Indeed, although processor allocation was

not used for these results, in tests it was very rare that it could �nd better allocations.

Finally the partition mapping strategy acknowledges the processor topology throughout

as in Figure 1(b).

3. PARALLEL PHYSICA

Research into multiphysics modelling by the Greenwich group has led to the speci�-

cation and development of PHYSICA, a modelling software framework for multiphysics

phenomena. The core component of PHYSICA is a code structure which provides a three

dimensional unstructured mesh framework for the solution of any set of coupled partial

di�erential equations up to second order.

For Finite Volume (FV) procedures the evaluation of
uxes across cell/element faces,

volume sources, and coe�cients of the linear solvers in the iterative procedures is generic,

being essentially based upon mesh geometry and material properties within a cell. As

such, the code can be structured so that nodes, FV cell faces and cell volumes can all be

calculated automatically and considered as software objects. Since, nodes, cell faces and

volumes are all considered as objects the mesh can be conceived of as simply the tool for

providing information on the connectivity of nodes, cell faces and volumes; its description

may be structured as such in a memory management system which has been designed so

that it makes no presuppositions on the geometric structure of the cells. Given that the

representation of the mesh connectivity is described by a memory management system,

it is straightforward to extend it to include a database system for the storage of all the

run time information as well as for model results of any given run. All equation solvers

are generic and constructed so that they may be called interchangeably by the user with

consistent data structures.

PHYSICA provides a SIMPLE based solution procedure for the fully compressible

Navier-Stokes equations with all variables co-located at cell centres using a modi�ed Rhie-

Chow method to estimate velocities at cell faces, plus a number of di�erencing methods

to specify the convection terms. A range of turbulence models including k-�, RNG k-

� and other length scale techniques together with enthalpy based solidi�cation/melting

procedures are coupled with the
uid
ow solver. Cell centred elastoviscoplastic solid

mechanics with contact analysis are coupled within the false time stepping.

The JOSTLE code is integrated into a PHYSICA prototype to provide at run time a

6

partition of the mesh elements. Face-based and a node-based partitions are derived from

the element partition to fully decompose the mesh into sub-domains. Each sub-domain

is extended with a surface of elements, faces and nodes overlapping the neighbouring

sub-domains. These overlaps carry variables required for the solution of the variables

within the sub-domain. Variables in the overlaps are updated from the the processors

on which the variable is calculated [5]. A consequence of this sub-domain extension is

to increase the sub-domain connectivity. Sub-domains that were not connected in the

original partition may become connected through the overlaps. Consider the sub-domain

graph in Figure 1(b), here the maximum node degree is four. After applying overlaps to

the sub domains the maximum node degree increases to �ve.

4. RESULTS

The test case used is a solidi�cation problem solving
ow, heat and stress over a 60,000

element mesh. This problem was run on the University's Transtech Paramid machine.

This machine has 28 i860XP based processing nodes, each of which is equipped with

32 or 16Mbyte of fast DRAM and a T800 communication co-processor. The processor

nodes are hard connected in pairs with Inmos C004 multi-stage crossbar switches providing

interconnection between the node pairs. This con�guration allows great versatility in node

interconnection topology. An obvious and simple arrangement for the Paramid topology

is a p�2 grid which is the arrangement used for these results. A virtual channel router

resident on each node allows message passing between all of the nodes on the machine as

though the machine were a fully connected network.

In the following two graphs the solid lines refer to partitions re
ecting a p�2 processor

topology and the dashed line indicates a partition re
ecting a 1D pipeline or p�1 topology.

unmapped

premapped

mapped

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

no. processors

cu
t e

dg
es

Figure 2. Number of cut edges for a range of partitions.

7

unmapped

postmapped

premapped

mapped

0 5 10 15 20 25 30

2

4

6

8

10

12

14

16

no. processors

sp
ee

du
p

Figure 3. Speedup for a range of partitions on an i860 based Transtech Paramid.

The lowest number of cut edges is given by the unmapped (postmapped) partition

but this does not give the best speedup performance. The unmapped and postmapped

partitions are actually the same; however the postmapped has in addition an optimised

mapping of partitions to processors applied to it. Where the two partitions give a similar

speedup this re
ects an unintentionally fortuitous mapping of the unmapped partition. It

is possible that the unmapped and postmapped partitions may by chance be identical, it

is however highly unlikely that the unmapped partition would ever give a better speedup

than the postmapped partition. The best overall speedup performance is given by the

mapped partitions, despite the cut edge count being higher than the other partitions.

This con�rms our proposition that partitioning in accordance with the machine topology

will result in improved performance. Using a 1D partition leads to a signi�cantly higher

number of cut edges and consequently the message length is far greater, however fewer

messages are required. In this case only two latencies are required for each overlap update

which explains the unexpectedly good speedup results for the pipeline partition. Given

that the imbalance of elements between the the sub-domains is less than 0:25% it is

apparent from this result that the machine performance with this code is latency bound.

Start-up latency on the Paramid has been measured as 33�s with a peak bandwidth

of 1.7Mbytes per second. This bandwidth is not sustained with virtual channel routing

and degrades to around 1.3 for near neighbour communication and can get as low as 0.9

for non local messages. This can deteriorate further to around 0.3Mbytes per second if

the communication channels are saturated. While this bandwidth is low in comparison

with other parallel machines [2] the latency is reasonably good. Similar performance may

therefore be expected from other platforms.

Partitioning onto a p � q processor array where q > 2 has yet to be tested, but is not

expected to improve performance on the Paramid because of the latency bound. Whilst

8

a q = 2 mapped partition is likely to incur �ve latencies, a q > 2 mapped partition can

incur eight latencies, but will not signi�cantly reduce the number of cut edges until P

increases considerably.

5. MACHINE TOPOLOGY PROFILE

In spite of what parallel machine manufacturers may claim there will always be a dis-

tance related communication cost. This cost becomes more signi�cant as the number

of processors increases. To quantify the variations in latency and bandwidth we have

developed a code which measures the communication performance of a parallel machine.

Latency is measured by the simple method of sending a short message between each

processor on the parallel machine. Similarly bandwidth is measured by sending a large

message between each processor. These measurements are initially carried out with only

one message being passed at any one time, and then with every node communicating

simultaneously. This provides a peak and a saturated performance measure that may be

expressed as a weighted graph (matrix) that describes the communication performance

between each pair of processors. What is immediately apparent is the non-uniform per-

formance described by the graph. Such a weighted graph can be obtained quickly, at

run time, and then used by the partitioning code to ensure that the mesh partition pro-

duced is appropriate for the measured machine communication pro�le as opposed to a

notional topology that may not be re
ected in actual communication performance. It is

anticipated that this scheme will provide improved performance across a range of parallel

machines without the need to understand or specify the architecture of the machine.

REFERENCES

1. S. T. Barnard and H. D. Simon. A Fast Multilevel Implementation of Recursive

Spectral Bisection for Partitioning Unstructured Problems. Concurrency: Practice &

Experience, 6(2):101{117, 1994.

2. J. Dongarra and T. Dunigan. Message passing performance of various computers.

Tr, Oak Ridge National Laboratory, University of Tenessee and Oak Ridge National

Laboratory, 1995.

3. M. Cross et al. Towards an integrated control volume unstructured mesh code for the

simulation of all of the macroscopic processes involved in shape casting. Num. Meth.

Industrial Forming Processes (NUMIFORM 92), pages 787{792, 1992.

4. C. Farhat. A Simple and E�cient Automatic FEM Domain Decomposer. Comp. &

Struct., 28:579{602, 1988.

5. K. McManus, M. Cross, and S. Johnson. Integrated Flow and Stress using an Unstruc-

tured Mesh on Distributed Memory Parallel Systems. In Parallel CFD'94. Elsevier,

1995. (in press).

6. C. Walshaw, M. Cross, and M. Everett. A Localised Algorithm for Optimising Un-

structured Mesh Partitions. Int. J. Supercomputer Applications, 1995. (in press).

7. C. Walshaw, M. Cross, S. Johnson, and M. Everett. JOSTLE: Partitioning of Un-

structured Meshes for Massively Parallel Machines. In Parallel CFD'94. Elsevier,

1995. (in press).

