1 vVariable partition inertia:
graph repartitioning and
load-balancing for adaptive
meshes

CHRIS WALSHAW

Computing & Mathematical Sciences, University of Greenwich,
Old Royal Naval College, London, SE10 9LS, UK.

1.1 INTRODUCTION

Graph-partitioning is now well established as an important enabling technol-
ogy for mapping unstructured meshes, for example from applications such as
Computational Fluid Dynamics (CFD), onto parallel machines. Typically, the
graph represents the computational load and data dependencies in the mesh,
and the aim is to distribute it so that each processor has an equal share of
the load whilst ensuring that communication overhead is kept to a minimum.

One particularly important variant of the problem arises from applications
in which the computational load varies throughout the evolution of the solu-
tion. For example, heterogeneity in either the computing resources (e.g. pro-
cessors which are not dedicated to single users) or in the solver (e.g. solving for
fluid flow and solid stress in different regions during a multiphysics solidifica-
tion simulation, e.g. [13]) can result in load-imbalance and poor performance.
Alternatively, time-dependent mesh codes which use adaptive refinement can
give rise to a series of meshes in which the position and density of the data
points varies dramatically over the course of a simulation and which may need
to be frequently repartitioned for maximum parallel efficiency.

This dynamic partitioning problem has not been nearly as thoroughly stud-
ied as the static problem but an interesting overview can be found in [6]. In
particular, the problem calls for parallel load-balancing (i.e. in situ on the par-
allel machine, rather than the bottleneck of transferring it back to some host
processor) and a number of software packages, most notably JOSTLE [26],
and ParMETIS [15], have been developed and can compute high quality parti-

ii

tions, in parallel, using the existing (unbalanced) partition as a starting point.
A question arises, however, over data migration — in general, the better the
computed partition, the more data (mesh elements, solution variables, etc.)
have to be transferred to realize it. Of course either a poor partition or heavy
data migration slows the solver down and so the trade-off between partition
quality and data migration can be crucial. Furthermore, the requirements of
this trade-off may change as the simulation continues (see Section 1.3).

In this chapter, we look at a new framework for managing this trade-off.
First, however, we establish some notation.

1.1.1 Notation and definitions

Let G = G(V, E) be an undirected graph of vertices, V, with edges, E, which
represent the data dependencies in the mesh. We assume that both vertices
and edges can be weighted (with non-negative integer values) and that ||v||
denotes the weight of a vertex v and similarly for edges and sets of vertices and
edges. Given that the mesh needs to be distributed to P processors, define a
partition 7 to be a mapping of V into P disjoint subdomains, S, such that
UpSp = V. The weight of a subdomain is just the sum of the weights of
the vertices assigned to it, ||Sy|| = >, ¢ s, [|lv]| and we denote the set of inter-
subdomain or cut edges (i.e. edges cut by the partition) by E.. Finally, note
that we use the words subdomain and processor more or less interchangeably:
the mesh is partitioned into P subdomains; each subdomain, S, is assigned
to a processor p and each processor p owns a subdomain S,.

The definition of the graph-partitioning problem is to find a partition which
evenly balances the load (i.e. vertex weight) in each subdomain, whilst min-
imising the communication cost. To evenly balance the load, the optimal
subdomain weight is given by S := [||V||/P] (where the ceiling function [z]
returns the smallest integer greater than z) and the imbalance, 6, is then
defined as the maximum subdomain weight divided by the optimal (since the
computational speed of the underlying application is determined by the most
heavily weighted processor). Note that 8 > 1 and perfect balance is given by
0 = 1. As is usual, throughout this chapter the communications cost will be
estimated by ||E.||, the weight of cut edges or cut-weight (although see [23]
for further discussion on this point). A more precise definition of the graph-
partitioning problem is therefore to find 7 such that ||S,|| < S and such that
||E.|| is minimized.

The additional objective for dynamic repartitioning is to minimize the
amount of data that the underlying application will have to transfer. We
model this by attempting to minimize |V;,|, the number of vertices which
have to migrate (change subdomains) in order to realize the final partition
from the initial one.

INTRODUCTION iii

1.1.2 Mesh-partitioning

VA

(a) mesh (b) dual graph (c) nodal graph (d) combined graph

Fig. 1.1 An example mesh and some possible graph representations.

As mentioned above, many of the applications for which partitioning is used
involve a parallel simulation, solved on an unstructured mesh which consists
of elements, nodes and faces, etc. For the purposes of partitioning, it is normal
to represent the mesh as a graph. Thus, if we consider the mesh shown in
Figure 1.1(a), the graph vertices can either represent the mesh elements (the
dual graph), Figure 1.1(b), the mesh nodes (the nodal graph), Figure 1.1(c),
a combination of both (the full or combined graph), Figure 1.1(d), or even
some special purpose representation to model more complicated interactions
in the mesh. In each case the graph vertices represent units of workload that
exist in the underlying solver and edges represent data dependencies (e.g. the
value of the solution variable in a given element will depend on those in its
neighboring elements).

1.1.3 Overview

In this chapter we discuss a new framework for the (re)partitioning and load-
balancing of adaptive unstructured meshes. In Section 1.2 we first give an
overview of the standard graph-partitioning and load-balancing tools and in
particular our implementation. In Section 1.3 we then describe the new ap-
proach, Variable Partition Inertia, and look at how it relates to previous work.
We test the new framework in Section 1.4 and illustrate some of the benefits,
and finally in Section 1.5 we present some conclusions and suggest some future
work.

Note that for the purposes of this chapter, particularly with regard to the
results, we tend to concentrate on situations where the changes in load are at
discrete points during the evolution of the solution. This is likely to happen
when either the mesh changes (as is the case for adaptive refinement) or the
computational resources change. However, the techniques discussed apply
equally to situations where the load changes are continuous (or at least quasi-
continuous) such as the solidification example mentioned above. In this sort
of problem, a further issue is when to rebalance, the decision being based on a
trade-off between the additional overhead for carrying out the repartitioning
and resultant data migration, as against the inefficiency of continuing the

iv

simulation with an unbalanced solver. We do not address that issue here
but an algorithm for determining whether or not a rebalance is likely to be
profitable (and thus for deciding the frequency of repartitioning) can be found
in [1].

1.2 MULTILEVEL REFINEMENT FOR
GRAPH-REPARTITIONING

In this section give an overview of the standard graph-(re)partitioning and
load-balancing tools and in particular their implementation within JOSTLE,
the parallel graph-partitioning software package written at the University of
Greenwich [24].

JOSTLE uses a multilevel refinement strategy. Typically such multilevel
schemes match and coalesce pairs of adjacent vertices to define a new graph
and recursively iterate this procedure until the graph size falls below some
threshold. The coarsest graph is then partitioned (possibly with a crude
algorithm) and the partition is successively refined on all the graphs starting
with the coarsest and ending with the original. At each change of levels, the
final partition of the coarser graph is used to give the initial partition for the
next level down. The use of multilevel refinement for partitioning was first
proposed by both Hendrickson and Leland [7] and Bui and Jones [4], and was
inspired by Barnard and Simon [2], who used a multilevel numerical algorithm
to speed up spectral partitioning.

Fig. 1.2 An example of multilevel partitioning

Figure 1.2 shows an example of a multilevel partitioning scheme in action.
On the top row (left to right) the graph is coarsened down to 4 vertices which
are (trivially) partitioned into 4 sets (bottom right). The solution is then
successively extended and refined (right to left). Although at each level the
refinement is only local in nature, a high quality partition is still achieved.

The graph-partitioning problem was the first combinatorial optimization
problem to which the multilevel paradigm was applied and there is now a
considerable body of literature about multilevel partitioning algorithms. Ini-

MULTILEVEL REFINEMENT FOR GRAPH-REPARTITIONING v

tially used as an effective way of speeding up partitioning schemes, it was soon
recognized as, more importantly, giving them a ‘global’ perspective [10], and
has been successfully developed as a strategy for overcoming the localized
nature of the Kernighan-Lin (KL) [12], and other optimization algorithms.
In fact, as discussed in [24, §3.2], this coarsening has the effect of filtering
out most of the poor quality partitions from the solution space, allowing the
refinement algorithms to focus on solving smaller, simpler problems.

This very successful strategy, and the powerful abilities of the multilevel
framework, have since been extended to other combinatorial problems, such
as the travelling salesman problem, e.g. [19].

1.2.1 Multilevel framework

1.2.1.1 Graph coarsening A common method for creating a coarser
graph Gi11(Viq1, Ei41) from Gi(V;, E;) is the edge contraction algorithm pro-
posed by Hendrickson and Leland [7]. The idea is to find a maximal indepen-
dent subset of graph edges, or a matching of vertices, and then collapse them.
The set is independent if no two edges in the set are incident on the same
vertex (so no two edges in the set are adjacent), and maximal if no more edges
can be added to the set without breaking the independence criterion. Having
found such a set, each selected edge, (vi,v2) € Ej say, is collapsed and the
vertices, vi,ve € Vj, are merged to form a new vertex, v € V41, with weight
[|lv]| = [lv1]| + ||v2]]- Edges which have not been collapsed are inherited by the
child graph, G;41, and, where they become duplicated, are merged with their
weight combined. This occurs if, for example, the edges (vi,v3) and (v2,v3)
exist when edge (v1,v2) is collapsed. Because of the inheritance properties of
this algorithm, it is easy to see that the total graph weight remains the same,
[lVig1]l = |IVill, and the total edge weight is reduced by an amount equal to
the weight of the collapsed edges.

2
! 2 2
' 2
1
1

Fig. 1.3 An example of coarsening via matching and contraction

Figure 1.3 shows an example of this; on the left two pairs of vertices are
matched (indicated by dotted rings). On the right, the graph arising from the
contraction of this matching is shown with numbers illustrating the resulting
vertex and edge weights (assuming that the original graph had unit weights).

A simple way to construct a maximal independent subset of edges is to
create a randomly ordered list of the vertices and visit them in turn, match-

vi

ing each unmatched vertex with an unmatched neighbor (or with itself if no
unmatched neighbors exist). Matched vertices are removed from the list. If
there are several unmatched neighbors the choice of which to match with can
be random, but it has been shown by Karypis and Kumar [10], that it can be
beneficial to the optimization to collapse the most heavily weighted edges.

JOSTLE uses a similar scheme, matching across the heaviest edges, or, in
the event of a tie, matching a vertex to the neighbor with the lowest degree
(with the aim of trying to avoid highly connected vertices).

In the case of repartitioning, an initial partition already exists and it is quite
common to restrict the coarsening to use only local matching (i.e. vertices
are only allowed to match with other vertices in the same subdomain). It has
been shown that on its own, this can help reduce vertex migration [26], and
when combined with modifications to the refinement algorithms, can be used
to help control the trade-off between migration and cut-weight [15]. However,
in §1.3.1 and following, we shall see that this is not necessarily the most
effective strategy.

Note that even if non-local matching is allowed, a initial partition of each
graph level can still be maintained by migrating one of each pair of non-locally
matched vertices to the other’s subdomain (the choice of which to migrate
being based on relative subdomain weights, or even random). JOSTLE allows
either local or non-local matching to take place (chosen by the user at run-
time).

1.2.1.2 The initial partition The hierarchy of graphs is constructed re-
cursively until the number of vertices in the coarsest graph is smaller than
some threshold and then an initial partition is found for the coarsest graph.
Since the vertices of the coarsest graph are generally inhomogeneous in weight,
some mechanism is then required for ensuring that the partition is balanced,
i.e. each subdomain has (approximately) the same vertex weight. Various
methods have been proposed for achieving this, often by terminating the con-
traction so that the coarsest graph, G, still retains enough vertices, |Vz|, to
achieve a balanced initial partition (i.e. so that typically |Vz| > P) [7, 10].
Alternatively, if load-balancing techniques are incorporated alongside the re-
finement algorithm, as is the case with JOSTLE, [20], the contraction can
be terminated when the number of vertices in the coarsest graph is the same
as the number of subdomains required, P, and then vertex v, is assigned to
subdomain S,, p=1,...,P.

In the case of repartitioning, even this is unnecessary. If only local match-
ing is allowed, then the vertices of the coarsest graph will already be assigned
to their original subdomain, and the partition cut-weight of the coarsest graph
will match that of the initial partition. It has also been shown [22, 26], that a
simple scheme for trading-off vertex migration against cut-weight is to termi-
nate the coarsening early, such as when the number of vertices in the graph
falls below some threshold (e.g. in experiments in [22], 20P was chosen as
an appropriate threshold, where P is the number of processors/subdomains).

MULTILEVEL REFINEMENT FOR GRAPH-REPARTITIONING vii

The reason for this is simple; each vertex in the coarsest graphs may rep-
resent hundreds or even thousands of vertices in the original graph and so
moving them from subdomain to subdomain may give rise to very high data
migration in the application. Conversely, since coarsening provides a contin-
uum that affords a global perspective, [10, 19], to the refinement algorithms
(with single-level refinement having almost no global abilities), then the more
coarsening that occurs, the better the cut-weight.

For the methods described here, however, we use our standard technique
of coarsening the graph down to P vertices, one per subdomain.

1.2.1.3 Partition extension Having refined the partition on a graph
Gi+1, the partition must be extended onto its parent G;. The extension
algorithm is trivial; if a vertex v € Vi1 is in subdomain S, then the matched
pair of vertices that it represents, vi,vs € V;, are also assigned to S,.

1.2.2 Refinement

At each level, the new partition, extended from the previous level, is refined.
Because of the power of the multilevel framework, the refinement scheme can
be anything from simple greedy optimization, to a much more sophisticated
one, such as the Kernighan-Lin algorithm. Indeed, in principle any iterative
refinement scheme can be used and examples of multilevel partitioning im-
plementations exist for simulated annealing, tabu search, genetic algorithms,
cooperative search and even ant colony optimization (see [19] for references).

1.2.2.1 Greedy refinement Various refinement schemes have been suc-
cessfully used including greedy refinement, a steepest descent approach, which
is allowed a small imbalance in the partition (typically 3-5%) and transfers
border vertices from one subdomain to another if either (a) the move improves
the cost without exceeding the allowed imbalance; or (b) the move improves
the balance without changing the cost. Although this scheme cannot guar-
antee perfect balancing, it has been applied to very good effect [11], and is
extremely fast.

Although not the default behavior, JOSTLE includes a greedy refinement
scheme, accessed by turning off the hill-climbing abilities of the optimization
(see below).

1.2.2.2 The k-way Kernighan-Lin algorithmm A more sophisticated
class of refinement method is based on the Kernighan-Lin (KL) bisection op-
timization algorithm [12], which includes some limited hill-climbing abilities
to enable it to escape from local minima. This has been extended to k-way
partitioning (here k is the same as P, the number of processors/subdomains)
in different ways by several authors (e.g. [7, 11, 20]) and recent implemen-
tations almost universally use the linear time complexity improvements (e.g.
bucket sorting of vertices) introduced by Fiduccia and Mattheyses [5].

viii

A typical KL-type algorithm will have inner and outer iterative loops with
the outer loop terminating when no vertex transfers take place during an inner
loop. It is initialized by calculating the gain — the potential improvement
in the cost function (the cut-weight) — for all border vertices. The inner
loop proceeds by examining candidate vertices, highest gain first, and if the
candidate vertex is found to be acceptable (i.e. it does not overly upset the
load-balance), it is transferred. Its neighbors have their gains updated and,
if not already tested in the current iteration of the outer loop, join the set of
candidate vertices.

The KL hill-climbing strategy allows the transfer of vertices between sub-
domains to be accepted even if it degrades the partition quality and later,
based on the subsequent evolution of the partition, the transfers are either re-
jected or confirmed. During each pass through the inner loop, a record of the
best partition achieved by transferring vertices within that loop is maintained,
together with a list of vertices which have been transferred since that value
was attained. If, during subsequent transfers, a better partition is found, then
the transfer is confirmed and the list is reset.

This inner loop terminates when a specified number of candidate vertices
have been examined without improvement in the cost function. This number
(i.e. the maximum number of continuous failed iterations of the inner loop)
can provide a user specified intensity for the search, A. Note that if A = 0 then
the refinement is purely greedy in nature (as mentioned in §1.2.2.1). Once
the inner loop is terminated, any vertices remaining in the list (vertices whose
transfer has not been confirmed) are transferred back to the subdomains they
came from when the best cost was achieved.

JOSTLE uses just such a refinement algorithm [20], modified to allow for
weighted graphs (even if the original graph is not weighted, coarsened versions
will always have weights attached to both vertices and edges). It incorporates
a balancing flow of vertex weight, calculated by a diffusive type load-balancing
algorithm [9], and indeed, by relaxing the balance constraint on the coarser
levels and tightening it up gradually as uncoarsening progresses, the resulting
partition quality is often enhanced [20].

Further details of the diffusive load-balancing and how it is incorporated
into the refinement can be found in [22]. However, since we regard it as only
incidental to the framework described below, and, in particular, since we do
not consider the partition inertia scheme to be diffusive load-balancing in its
classical sense, we do not discuss it further.

1.2.3 Parallelization

Although not necessarily easy to achieve, all the techniques above have been
successfully parallelized. Indeed, the matching, coarsening and expansion
components of the multilevel framework are inherently localized and hence
straightforward to implement in parallel. The refinement schemes are more
difficult, but, for example, by treating each inter-subdomain interface as a sep-

VARIABLE PARTITION INERTIA ix

arate problem and then using one of the two processors that shares ownership
of the region to run the (serial) refinement scheme above, parallel partitioning
has not only been realized, but has also been shown to provide almost iden-
tical results (qualitatively speaking) as the serial scheme. More details can
be found in [21], and parallel run times for dynamic diffusive repartitioning
schemes appear in [26].

1.2.4 Tterated multilevel partitioning

The multilevel procedure usually produces high quality partitions very rapidly,
and if extra time is available to the algorithm, then one possibility is to in-
crease the search intensity, A (see §1.2.2). However this has limited effect
and it has been shown, e.g. [19], that an even more effective, although time-
consuming technique is to iterate the multilevel process by repeatedly coars-
ening and uncoarsening and, at each iteration, using the current solution as
a starting point to construct the next hierarchy of graphs. When used with
local matching, the multilevel refinement will then find a new partition that
is no worse than the initial one. However, if the matching includes a ran-
dom factor, each coarsening phase is very likely to give a different hierarchy
of graphs to previous iterations and hence allow the refinement algorithm to
visit different solutions in the search space.

We refer to this process, which is analogous to the use of V-cycles in multi-
grid, as an iterated multilevel (IML) algorithm.

1.3 VARIABLE PARTITION INERTIA

A considerable body of work has now arisen on repartitioning schemes for
adaptive meshes (e.g. [3, 15, 17, 26, 22]) and tends to resolve into two different
approaches. If the mesh has not changed too much then it is generally held
that the best way of minimising data migration is to spread the load out
diffusively from overloaded to underloaded processors, e.g. [17, 22]. However,
if the mesh has changed dramatically then diffusion may not only severely
compromise partition quality (since migrating vertices are channelled through
certain processors [17]), but may even result in heavy data migration. In
such cases it seems more natural to repartition from scratch and then use
heuristics to map the new subdomains so as to maximize overlaps with current
subdomains as far as possible. This idea, known as scratch-remapping has
been investigated by Biswas & Oliker [3], who devised appropriate mapping
heuristics and improved by Schloegel et al. [16], who modified the strategy to
use the remapping heuristics on the coarsest graphs of the multilevel process
(rather than the final partition).

However, a question arises from this choice of procedures: how does the
solver know which approach to use a priori, and, if it chooses the diffusive
route, how does it manage the trade-off between cut-weight and data migra-

tion? (N.B. Since the scratch-remapping is two phase optimization/assignment
approach, there is no possibility for a trade-off and the migration is purely a
function of the partition found.)

Furthermore, consider a typical situation in which a CFD solver simulates
the build up of a shock wave — initially the mesh will change frequently and so
data migration may be of prime concern; however, as the solution approaches a
steady state, remeshes become infrequent and so the emphasis should perhaps
be on finding the very best quality partition in order to minimize the cost of
repeated halo updates of solution variables. In other words, the correct trade-
off is not even fixed.

1.3.1 Motivation

In this chapter we attempt to answer the question raised above by deriv-
ing a general framework which can handle both large and small changes in
the partition balance, and which elegantly manages the migration/cut-weight
trade-off. To motivate the ideas, we first consider some related work, and
then discuss the issue of local matching.

1.3.1.1 Related work In developing the fairly simple ideas behind this
chapter, we borrowed from a selection of previous work, and three papers
in particular, all of which have attempted to address the trade-off between
cut-weight and data migration. For example, in an early attempt, Walshaw
& Berzins [28] condensed internal vertices (i.e. those at some chosen distance
from subdomain borders) to form ‘super-vertices’, one per subdomain, and
then employed the standard recursive spectral bisection (RSB) algorithm [18],
on the resulting graph. Not only did this considerably reduce the computa-
tional expense of RSB, but also prevented excessive data migration since the
the super-vertices, and their contents, were fixed in their home subdomain.
However, it results in rather an inflexible strategy — once condensed, vertices
that make up the super-vertices cannot ever migrate, even if necessary to
balance the load or improve partition quality.

Another strategy for controlling the migration/cut-weight trade-off is to
use local matching, but to terminate the graph coarsening early (once the
graph size falls below some threshold), and then use diffusive load-balancing in
conjunction with the refinement phase [22, 26]. As mentioned in §1.2.1.2, this
works because the more coarsening that occurs, the more ‘global’ the partition
quality and hence, in principle, the smaller the cut-weight and the larger the
data migration. The threshold can thus serve as a parameter to manage
the migration/cut-weight trade-off. However, although it works reasonably
well (at least in situations where the graph has not changed too much), this
parameter is rather crude and hence affords little control over the trade-off.

Perhaps most closely related to the work here, however, is the multilevel
directed diffusion (MLDD) algorithm of Schloegel et al. [15]. They used the
observation that, if only local matching is allowed, every vertex, both those

VARIABLE PARTITION INERTIA xi

in the original graph and those in the coarsened graph, has a home proces-
sor/subdomain. (Recall from §1.2.1.1, local matching means that vertices are
only allow to match with those in the same subdomain, and so any coarsened
vertex is purely made up of vertices from one subdomain.) They then clas-
sified vertices as clean if they were still assigned to their home processor, or
dirty if they had moved away. This meant they could modify the refinement
algorithm, a similar variant of KL to that described in §1.2.2, to prefer the
migration of dirty vertices to clean ones (since they do not increase migration
any further). Furthermore they defined a cleanness factor (CF) which allowed
the algorithm to control the movement of clean vertices — for example, with
the CF set to a small value, clean vertices were only allowed to migrate if they
reduced the cut-weight. However, they found that the modified algorithm only
worked if the graph had not changed too much, and they also found that in
certain situations the diffusive load-balancing could compromise the partition
quality (hence their introduction of their wavefront diffusion scheme in [17]).

In all of these schemes, although the intent to control data migration is
evident, there are still some issues that arise. Firstly, as mentioned above, it
is not clear when to use the scratch-remap scheme rather than diffusive load-
balancing and, indeed, when using diffusive load-balancing, it does seem that
it can sometimes damage the partition quality by forcing vertices to move
according to the balancing flow computed by the load-balancing algorithm
(see §1.2.2). For example, if two subdomains with very different loads are
adjacent, then the balancing flow may require that a large number of vertices
flow across their common border. However, if that border is very short (a
factor which the load-balancer does not take into account) then this flow can
seriously distort the partition and hence increase cut-weight.

1.3.1.2 Local matching All three schemes mentioned above use a form
of local matching. Whilst this does seem to result in lower data migration,
we have noticed that sometimes it may inhibit the multilevel algorithm from
doing the best job it can, since it places artificial restrictions on the multilevel
coarsening.

To see this, consider the coarsenings shown in Figure 1.4, where the dashed
line indicates an initial partition. Clearly, there are a number of ways that
this tiny graph could be coarsened, but if only local matching is allowed,
then that indicated by the rings in Figure 1.4(a) is quite likely. In particular,
vertices on the subdomain borders are forced to match with each other or with
internal vertices. When such a matching is used for coarsening, the graph
shown in Figure 1.4(b) results (here the larger vertices now have weight 2
and the thicker line indicates an edge of weight 2). The second coarsening
is more straightforward; if the heavy-edge heuristic is used (see §1.2.1.1) it is
very likely that the matching shown by the single ring will occur, resulting in
the coarsened graph shown in Figure 1.4(c). Unfortunately, however, neither
graph in (b) or (c) is much good for finding the optimal partition (since the
optimal edges to cut have been hidden by the coarsening) and so the multilevel

xii

(b) ! ()

(© (f)

Fig. 1.4 An example partitioned graph being coarsened via local matching, (a)-(c),
and non-local matching, (d)-(f).

partitioner must wait until the original graph before it can solve the problem.
In other words, edges close to the subdomain borders are very likely to be
collapsed early on by local matching and yet these edges are often the very
ones that the partitioner is likely to want to cut.

Conversely, suppose we do not restrict the matching of vertices to others in
the same subdomain and the matching shown in Figure 1.4(d) is chosen. This
results in the graph in Figure 1.4(e) and indeed if this graph were coarsened
using the heavy-edge heuristic, the graph in Figure 1.4(f) would inevitably
result. Unlike the previous case, however, the optimal partition can now be
found from the coarsest graph!

To summarize then, the local matching, although a heuristic that certainly
reduces vertex migration, may actually act against the needs of the partitioner.

Of course, this is only a tiny example in which we have deliberately chosen
bad and good matchings. However, although coarsening is typically a very
randomized process (since, even with the heavy edge heuristic in place, the
vertices are usually visited in random order), once certain initial matching
choices have been made, many others are forced on the graph. For example,
in Figure 1.4(d), once the vertex in the top left hand corner has matched
with the next vertex along horizontally, then the vertex in the bottom left
hand corner is also forced to match horizontally. Indeed, in Figure 1.4(e)

VARIABLE PARTITION INERTIA xiii

the matching shown is the only one which the heavy-edge heuristic would
compute.

Nonetheless, it is interesting to see that the issue can be demonstrated in
such a small graph, and it seems quite possible that an accumulation of many
sub-optimal coarsening choices, forced by local matching, could have deleteri-
ous effects on the partition quality. This is also borne out by experimentation
(see below).

1.3.2 The inertia graph

In order to overcome the issues raised in §1.3.1 we borrow ideas from the
papers mentioned above. Firstly we want a consistent strategy which can
be employed whether or not the graph has changed dramatically, and this
mitigates against the use of diffusive load-balancing. Furthermore, we want
to give the coarsening complete freedom to create the hierarchy of graphs
and, in particular, allow non-local matching (i.e. the matching of vertices in
different subdomains). However, we also need to control the vertex migration
explicitly.

1.3.2.1 Building the graph In fact a simple solution presents itself: We
first add P zero-weighted vertices to the graph, {v1,...,7p}, one for each
subdomain, which we refer to as subdomain vertices. We then attach every
ordinary vertex, v, to its home subdomain vertex using a weighted edge,
(v,Up), where v is in subdomain S, in the initial partition. The weight on
these edges will reflect in some way how much we wish to restrict vertex
migration.

We refer to this new graph, an augmented version of the original, as the
inertia graph, G(V,E), so called because it encourages an inertia against
vertex migration. Here, the number of vertices is given by |V| = |V|+ P and,
since we add one edge for every existing vertex, the number of edges is given
by [E] = V] +|E].

Figure 1.5(a) shows an example of a small partitioned graph and Fig-
ure 1.5(b) the corresponding inertia graph. Figures 1.5(c) & 1.5(d) then show
the first and second coarsenings of this graph. A number of non-local match-
ings, indicated by a coarsened vertex having edges to two (or potentially more)
subdomain vertices, can be seen in both of these figures, for example centre
top of Figure 1.5(d).

An important point is that the inertia graph represents exactly the same
problem as the original graph in terms of load-balance, since the subdomain
vertices are zero weighted. However, every vertex that migrates away from
its original subdomain results in an additional contribution to the partition
cost, the impact of which is determined by the ratio of ordinary edge weights
to inertial edge weights.

We can then use exactly the same multilevel partitioning techniques on the
graph as described in Section 1.2, provided we ensure that none of the subdo-

xiv

Vi
%

=
740NN
[YNZ7

A

Fig. 1.5 An example graph showing (a) the initial partition, (b) the corresponding
inertia graph, (c) the first coarsening, and (d) the second coarsening.

main vertices are ever allowed to migrate. We also want to leave the matching
essentially unchanged, so we never allow the ordinary vertices to match with
subdomain vertices. These two features are achieved by implementing the
subdomain vertices as fixed vertices which are not allowed to migrate, nor to
match with other vertices. (In fact, fixed vertices were already implemented
in JOSTLE as part of an approach to the multiphase partitioning problem
27].)

1.3.2.2 Weighting the edges The question then arises, what weight
should be put on the new inertial edges between vertices and subdomain
vertices? We want the weights to control the vertex migration, and indeed, as
mentioned in the introduction to Section 1.3, the priorities may change as the
solver progresses. It is therefore more useful to think about the ratio between
ordinary and inertial weights.

Consider first the simplest case, where the original graph edges are un-
weighted, i.e. they all have a weight of 1. If the ratio is 1:3 then we could
simply set every inertial weight to 3. Conversely, if we required a ratio of 3:1,
that suggests setting the weight of the inertial edges to 1/3. However, non-
integer weights complicate the partition refinement algorithms (although they
can be achieved — see [25]) and so instead we could set every inertia weight
to 1 and then adjust every ordinary edge by giving it an additional weight of
2. (Note that adding a constant weight to every ordinary edge does not in
itself change the partitioning problem, since the change in the cost function
of moving a vertex from one subdomain to another is calculated as a relative
quantity.)

In our initial experiments we then found that the results for different ratios
were rather dependent on the type of graph being employed. Consider, for

VARIABLE PARTITION INERTIA XV

example, the case where the weights on the inertial edges are all set to 1. A
2D dual graph which represents a mesh formed of triangles (see §1.1.2) will
have a maximum vertex degree of 3 and so an inertial edge of weight 1 has
quite a large effect. Conversely, in a 3D nodal graph representing a mesh
formed of tetrahedra, a vertex might have a degree of 20 or 30 and so the
effect of the inertial edge is negligible.

To counteract this, we calculated the average vertex edge weight € =
[|E||/|V|, the average weight of edges incident on each vertex (rounded to
the nearest integer value). Then, if we require a ratio of we:w; between ordi-
nary and inertial weights, where, without much loss of generality w, and w;
are positive integers, we simply set the inertia edges to have the weight w; x €
and add (w, — 1) to the ordinary edge weights. This also covers the case of
graphs with weighted edges.

To give two examples from the test graphs in §1.4.1, brack2, a 3D nodal
graph, has 62,631 vertices and 366,559 edges, each of weight 1, so the average
vertex edge weight is 5.85, rounded up to € = 6. Thus for a ratio of 1:1 we set
the inertial edge weights to 6 and leave the ordinary edge weights at 1; whilst
for a ratio of 5:1 we set the inertial edge weights to 6 and add 4 = (5—1) to the
ordinary edge weights. Meanwhile, mesh100, a 3D dual graph, has 103,081
vertices and 200,976 edges, each of weight 1, so the average vertex edge weight
is 1.94, rounded up to € = 2. Thus for a ratio of 1:1 we set the inertial edge
weights to 2 and leave the ordinary edge weights at 1; whilst for a ratio of
5:1 we set the inertial edge weights to 2 and again add 4 = (5 — 1) to the
ordinary edge weights. With this scheme in place, experimentation indicates
that a given ratio produces similar effects across a wide range of graph types.

1.3.2.3 Discussion As mentioned, the partition inertia framework bor-
rows from existing ideas and the strategy of modifying the graph and then
using standard partitioning techniques has been successfully employed previ-
ously, e.g. [25, 27]. Indeed, in a very similar vein, both Hendrickson & Leland
[8], and Pellegrini & Roman [14], used additional graph vertices, essentially
representing processors/subdomains, although in these cases the aim was to
enhance data locality when mapping onto parallel machines with non-uniform
interconnection architectures (e.g. a grid of processors or a meta-computer).

Superficially, though, the partition inertia framework is most similar to
the multilevel directed diffusion (MLDD) algorithm of Schloegel et al. [15],
as described in §1.3.1.1, with the ratio of inertia edge weights to ordinary
edge weights (the parameter that controls the trade-off of cut-weight and
migration), mirroring the cleanness factor.

However, it differs in three important aspects. Firstly, the MLDD scheme
relies on local matching — indeed without the local matching there is no means
to determine whether a coarsened vertex is ‘clean’ or ‘dirty’. Secondly, MLDD
uses diffusion in the coarsest graphs to balance the load, whereas the partition
inertia framework uses a more general multilevel partitioning scheme which
is not diffusive in nature (indeed, since non-local matching is allowed, the ini-

xvi

tial partition is completely ignored throughout the coarsening and the coarsest
graph is likely to be better balanced than the initial one since non-local match-
ing may result in migrations which can be chosen to improve the balance). It
is true that a balancing flow, calculated via a diffusive algorithm, is incorpo-
rated into JOSTLE’s refinement algorithm to adjust partitions which become
imbalanced, but this is simply a standard tool in JOSTLE’s armoury which is
frequently never used. Thirdly, and most importantly, the MLDD scheme is
implemented by restricting the matching and then modifying the refinement
algorithm, whereas partition inertia is a much more general framework which
works by modifying the input graph and, in principle, could use any high qual-
ity partitioning scheme (with the minor requirement that the P fixed vertices
never migrate from their home subdomain).

1.3.3 Setting the ratio: a self-adaptive framework

Of course, it is not easy to judge what ratio to choose for the inertial and
ordinary weights. Even with extensive experimentation it would be hard to
predict for any given problem. In addition, as has been mentioned, the relative
weighting is quite likely to change throughout the simulation.

As a result we propose the following simple scheme. Initially the ratio is
set to something reasonable, chosen empirically. In the experiments below,
Section 1.4, an appropriate ratio seems to be around 5:1 in favor of the ordi-
nary edge weights. However, this is dependent on the characteristics of the
simulation.

Subsequently, all that is required from the solver is that it monitor the
parallel overhead due to halo updates of solution variables and estimate the
data migration time at each remesh. It then simply passes an argument to
the partitioner, expressing whether halo updates take more, less or about the
same time. If the halo updates are taking longer, the ratio is increased (e.g.
6:1, 7:1, ...) in favor of ordinary edge weights, with the aim of improving
cut-weight. Conversely, if the data migration time is longer, the partitioner
decreases the ratio (e.g. 4:1, 3:1, ...) and if this trend continues beyond 1:1
it is increased in the other direction (e.g. 2:1, 1:1, 1:2, 1:3, ...). Not only is
this extremely simple, it requires little monitoring on the part of the solver.

Note that, whilst this idea is very straightforward and could easily have
been implemented in previous work (e.g. [22]), where the trade-off was con-
trolled by the coarsening threshold, in fact, the problem with that was that
the threshold parameter is rather a crude one which gives relatively little
control over migration. However, the experimental results indicate that with
variable partition inertia, the correlation between the parameter setting (the
edge weight ratio) is much more stable and hence provides a much more robust
method for managing the trade-off.

EXPERIMENTAL RESULTS xvii

1.4 EXPERIMENTAL RESULTS

As discussed in Section 1.2, the software tool written at Greenwich and which
we use to test the variable partition inertia concept is known as JOSTLE. It
is written in C and can run in both serial and parallel, although here we test
it in serial.

In the following experiments we use two metrics to measure the performance
of the algorithms — the cut-weight percentage, || E.||/||E||, and the percentage
of vertices which need to be migrated, |V,,|/|V|. We do not give run times
since, essentially, the partition inertia scheme is running exactly the same
algorithms as JOSTLE-MS. It is true that the input graph is extended by
having subdomain vertices and inertial edges, but since these are excluded
from most calculations, the run times are broadly similar.

1.4.1 Sample results

We first provide some sample results from fairly well known mesh-based
graphs!, often used for benchmarking partitioners. For each of the three
meshes we have generated three high quality, but imbalanced, partitions cal-
culated by JOSTLE with the permitted imbalance set to approximately 25%,
50% and 100% (although JOSTLE was never written to hit these relaxed con-
straints exactly, so some of the imbalances vary a little). We then test each
configuration using these partitions as a starting point.

Firstly, to compare with our previous work and the algorithms discussed
in [22], it is run in three previous configurations, dynamic (JOSTLE-D),
multilevel-dynamic (JOSTLE-MD) and multilevel-static (JOSTLE-MS). The
two dynamic configurations primarily use diffusive load-balancing: JOSTLE-
D, reads in the existing partition and uses the single-level refinement algorithm
outlined in §1.2.2 to balance and refine the partition, whilst JOSTLE-MD,
uses the same procedure but incorporated within the multilevel framework
(8§1.2.1) to improve the partition quality. JOSTLE-MD also uses local match-
ing and, as discussed in §1.2.1.2, a coarsening threshold to control the trade-off
between cut-weight and vertex migration (set to 20P for all the experiments
below). Finally, the static version, JOSTLE-MS, uses the same core algo-
rithms, but ignores the initial partition entirely and hence provides a set of
control results.

To demonstrate the variable partition inertia (VPI) framework, we employ
three different settings. Recall from §1.3.2 that the paradigm involves modi-
fying the input graph by attaching an inertial edge between every vertex and
its home subdomain. The graph edges are then weighted according to a ra-
tio, we:w;, which expresses the difference between ordinary and inertial edge
weights.

Lavailable from http://staffueb.cms.gre.ac.uk/~c.walshaw/partition

xviii

After some preliminary experimentation, we chose the ratios 10:1, 5:1 and
1:1 for the results presented here. A ratio of 1:1 gives approximately equal
weighting to inertial and ordinary edges and hence puts a lot of emphasis on
minimising vertex migration. Meanwhile, a ratio of 10:1 makes the inertial
edges very much weaker than any ordinary edge and hence puts the emphasis
on minimising cut-weight (although still preventing too much migration).

Table 1.1 Migration results for the sample graphs

JOSTLE JOSTLE(VPI)
graph /imbalance MS MD D 10:1 5:1 1:1
4elt/1.25 96.5% 11.6% 10.0% 8.8% 7.4% 7.7%
4elt/1.49 96.8% 28.1% 27.7% 22.1% 23.9% 19.7%
4elt/1.98 92.5% 47.1% 44.5% 36.8% 34.7% 34.8%
brack2/1.22 95.9% 14.7% 14.8% 16.2% 11.3% 9.8%
brack2/1.55 96.7% 29.6% 30.8% 26.7% 24.3% 21.5%
brack2/1.99 93.0% 41.5% 44.3% 43.8% 37.2% 36.7%
mesh100/1.30 87.4% 16.2% 17.0% 15.7% 14.4% 13.5%
mesh100/1.50 96.9% 48.1% 43.3% 34.9% 28.0% 22.8%
mesh100/1.89 92.6% 50.9% 49.3% 44.8% 42.7% 38.0%
average 94.3% 32.0% 31.3% 27.8% 24.9% 22.7%
local 28.0% 24.2% 23.3%
IML 25.0% 22.4% 22.1%

The migration and cut-weight results are presented in Tables 1.1 & 1.2
respectively. The averages for each partitioning scheme over the nine results
are shown at the bottom and it is instructive to focus on these. Firstly, and
as should be expected, the trend lines of the two different approaches show
how migration can be traded-off against cut-weight. Because JOSTLE-MS
takes no account of the existing partition it results in a vast amount of data
migration (94.3%). However, and as shown in [22], the dynamic diffusive
partitioners are able to make a considerable difference and reduce this to just
over 30%. The cut-weight results increase accordingly though (2.77% up to
3.27%) and if less migration takes place (JOSTLE-D), the partitioner cannot
refine as well, and the cut-weight driven up. Interestingly, however, and as
suggested in [15], with these very unbalanced initial partitions the diffusive
partitioners may not be the method of choice and JOSTLE-D does little better
in terms of migration than its multilevel counterpart, JOSTLE-MD.

The same trends are in evidence with the VPI results — as the edge weight
ratio decreases from 10:1 to parity (thus putting increasing emphasis on min-
imising migration), the migration certainly decreases, but at the cost of in-
creasing cut-weight. However, comparing the two, JOSTLE(VPI) does much
better than the diffusive partitioners. For example, with the ratio 10:1, JOS-

EXPERIMENTAL RESULTS xix

Table 1.2 Cut-weight results for the sample graphs

JOSTLE JOSTLE(VPI)
graph/imbalance MS MD D 10:1 5:1 11
delt/1.25 2.32% 2.21% 2.31% 2.25% 2.30% 2.42%
4elt/1.49 2.32% 2.26% 2.48% 2.43% 2.52% 3.02%
4elt/1.98 2.32% 2.35% 2.71% 2.58% 2.60% 3.92%
brack2/1.22 3.59% 3.60% 3.84% 3.54% 3.57% 3.82%
brack2/1.55 3.59% 3.85% 3.97% 3.57T% 3.72% 4.45%
brack2/1.99 3.59% 3.87T% 4.41% 3.60% 3.74% 3.89%
mesh100/1.30 2.38% 2.42% 2.73% 2.36% 2.41% 2.97%
mesh100/1.50 2.38% 2.61% 3.65% 2.62% 2.83% 3.41%
mesh100/1.89 2.38% 2.33% 3.29% 2.58% 2.78% 3.37%
average 2.77% 2.83% 3.27% 2.84% 2.94% 3.47T%
local 293% 3.00% 3.48%
IML 2.70% 2.80% 3.24%

TLE(VPI) has almost identical cut-weight to JOSTLE-MD (2.84% against
2.83%) but considerably better migration (27.8% against 32.0%) and with
the ratio 1:1, JOSTLE(VPI) even reduces migration down to 22.7%. Perhaps
most importantly, however, the VPI framework appears to offer much finer
control over the migration/cut-weight trade-off.

At the bottom of the tables we also present averages for two other fla-
vors of the VPI scheme. The row marked ‘local’ uses local matching (and
hence should produce very similar results to the MLDD scheme, as discussed
in §1.3.2.3). However, as suggested in §1.3.1.2, it does seem that the lo-
cal matching results in worse partition quality (2.93%-3.48% against 2.84%-
3.47%) without improving the migration (28.0%-23.2% against 27.8%-22.7%).

Finally, the row marked IML uses iterated multilevel refinement (§1.2.4),
repeatedly coarsening and uncoarsening to find better results. Although not
a serious contender in a time-critical application such as the repartitioning
of parallel adaptive meshes, it does indicate very well the flexibility of the
VPI framework. Indeed, since we have just modified the input graph, we
can, in principle, use any partitioning scheme to attack the problem, and
here, by using a very high quality one, albeit much more time-consuming,
we can find even better results. For example, the ratio 10:1 used in iterated
JOSTLE(VPI) finds the best cut weight results (2.70%) in combination with
very good migration results (25.0%).

XX

1.4.2 Laplace solver adaptive mesh results

To give a fuller flavor of the VPI framework we carried out further experiments
on two sets of adaptive unstructured meshes.

The first set of test meshes have been taken from an example contained
in the DIME (distributed irregular mesh environment) software package [29].
This particular application solves Laplace’s equation with Dirichelet boundary
conditions on a square domain with an S-shaped hole and using a triangular
finite element discretisation. The problem is repeatedly solved by Jacobi
iteration, refined based on this solution and then load-balanced. Similar sets
of meshes have previously been used for testing repartitioning algorithms [17,
22, 26] and details of DIME can be found in [30].

For the test configurations, the initial mesh is partitioned with the static
version — JOSTLE-MS. Subsequently at each refinement, the existing par-
tition is interpolated onto the new mesh using the techniques described in
[28] (essentially, new elements are owned by the processor which owns their
parent) and the new partition is then refined.

As for the sample graphs, the experiments have been run using JOSTLE-
MS as a control, two example diffusive partitioners, JOSTLE-MD and JOSTLE-
D, and a number of partition inertia variants. In particular, we use the same
three edge weight ratio settings as above, 10:1, 5:1 and 1:1, and two variable
schemes which we discuss below. Note that we now distinguish between the
schemes where the edge weight ratios are fixed, JOSTLE(PI), and the variable
ones, JOSTLE(VPI).

Table 1.3 Migration results for the Laplace graphs

JOSTLE JOSTLE(PI) JOSTLE(VPI)
MS MD D 10:1 5:1 1:1 1041 111

G

1 90.3% 17.3% 10.6% 23.2% 14.8% 92% 232% 9.2%
2 93.6% 18.5% 12.9% 204% 15.7% 104% 174% 11.4%
3 98.2% 13.3% 58% 10.7% 92% 6.7% 12.2% 10.2%
4 86.5% 9.3% 6.7% 12.8% 86% 5.6% 4% 87%
)
6
7
8
9

97.8% 6.4% 25% 86% 50% 1.5% 5.7% 4.8%
98.2% 55% 31% 93% 49% 1.6% 41% 6.3%
92.7% 68% 1.9% 3.7% 4.0% 0.6% 21% 0.0%
100.0% 4.0% 13% 3.7% 21% 06% 21% 3.2%
96.6% 4.9% 13% 32% 27% 07% 05% 3.9%

avg 94.9% 9.6% 51% 106% 7.5% 41% 83% 6.4%

local 59% 54% 42% 54% 5.5%
IML 76% 5.9% 4.0% 72% 5.4%

EXPERIMENTAL RESULTS xxi

Table 1.4 Cut-weight results for the Laplace graphs

JOSTLE JOSTLE(PI) JOSTLE(VPI)
G MS MD D 10:1 5:1 1:1 101 11:1
1 519% 5.73% 5.86% 5.77% 5.86% 6.27% 5.77% 6.27%
2 4.04% 4.59% 534% 4.95% 4.88% 5.92% 4.72% 5.14%
3 3.57T% 3.714% 4.86% 3.95% 3.98% 5.10% 391% 4.26%
4 3.35% 3.13% 4.12% 3.30% 3.49% 4.37% 3.13% 3.51%
5 2.86% 240% 3.33% 2.72% 2.78% 3.50% 2.77% 2.85%
6 231% 2.00% 3.00% 2.24% 245% 3.07% 2.31% 2.48%
7 1.94% 1.74% 2.53% 191% 1.96% 2.55% 1.96% 2.20%
8 1.71% 1.48% 2.19% 1.59% 1.69% 2.25% 1.70% 1.73%
9 1.40% 1.34% 1.92% 1.3™% 1.46% 1.95% 1.51% 147%
avg 2.93% 291% 3.68% 3.09% 3.17% 3.88% 3.09% 3.32%
local 317% 3.52% 3.91% 3.30% 3.43%
IML 2.96% 3.06% 3.75% 3.04% 3.30%

The migration and cut-weight results are presented in Tables 1.3 & 1.4
respectively, and, once again, looking at the averages, the trend lines are in
the same directions. From left to right, as the vertex migration decreases,
the cut-weight increases. In fact, for this set of results, the best average
cut-weight is found by JOSTLE-MD and the VPI scheme is unable to match
this. However JOSTLE-MD results in 9.6% migration and if vertex migration
is the most important factor, then the VPI scheme 1:1 manages to find the
minimum value of 4.1%.

As mentioned in the introduction to Section 1.3, however, as the simu-
lation progresses, the needs of the solver may change with respect to the
migration/cut-weight trade-off. To test this, we looked at the trend of the
results and tried two schemes, indicated by 10J:1 and 11:1, in which the
edge weight ratio changes with each mesh. For example, if we look at the
cut-weight results for individual meshes, we can see that they decrease from
between 5-6% down to 1-2% as the simulation progresses. In other words,
the cut-weight plays a more important role at the beginning of the simulation
than at the end. This suggests a VPI scheme that does the same and so we
tested the 10):1 scheme where the ratio starts at 10:1 for the first mesh and
then decreases towards parity with every successive mesh (i.e. 10:1, 9:1, 8:1,

..). The average results indicate the success of this strategy — when com-
pared with 10:1, it achieves the same cut-weight (3.09%) but improves on the
migration (8.3% against 10.6%).

Similarly, we looked at the migration, which also plays a more important
role at the beginning of the simulation than at the end, and tried to match
this with the scheme 11:1 (with ratios of 1:1, 2:1, 3:1, ...). Once again, this

xxii

improved on the 1:1 scheme and fits well into the trade-off curve of migration
versus cut-weight.

In summary, these two variable schemes give some indication of how the
VPI framework can track the needs of the solver. In this particular case, it is
not clear which of the two schemes to use, but this would depend heavily on
the relative costs of data migration and halo updates of solution variables.

Finally, we used these graphs to test local matching and iterated multilevel
refinement in combination with the VPI framework (the two rows at the bot-
tom of the table). Once again, the results demonstrate that local matching
can harm partition quality, and that the VPI framework is not dependent
on a particular partitioner — if given more time for searching, such as with
the iterated multilevel algorithm, it can find considerably better results (e.g.
iterated JOSTLE(PI) with 10:1 ratio).

Overall then, for this set of test meshes the results are inconclusive in the
comparison of diffusive repartitioners against VPI based schemes. However,
the VPI framework does give a lot more control over the trade-off, particularly
when we employ the variable version.

1.4.3 CFD adaptive mesh results

Our second set of test meshes come from a CFD simulation in which a shock
wave builds up rapidly. Commercial sensitivity prevents us giving details of
the meshes, but they are of medium size and consist of 2D triangular elements.

Table 1.5 Migration results for the CFD graphs

JOSTLE JOSTLE(PI) JOSTLE(VPI)
G MS MD D 10:1 5:1 1:1 101 11:1
1 73.4% 7.0% 0.5% 3.8% 3.0% 0.5% 3.8% 0.5%
2 46.7% 9.1% 5.9% 4.9% 5.5% 4.0% 4.8% 3.8%
3 53.3% 12.5% 7.0% 9.7% 8.5% 59% 12.2% 7.6%
4 53.7% 16.0% 4.6% 7.8% 5.6% 3.5% 6.9% 8.3%
5 93.5% 18.4% 4.8% 21.0% 17.2% 74% 121% 12.2%
6 574% 19.0% 8.8% 12.3% 14.1% 5.9% 9.8% 9.9%
7 68.6% 24.2% 14.1% 22.6% 156% 12.9% 181% 18.7%
8 55.2% 7.4% 6.5% 85% 6.5% 6.1% 9.3% 9.1%
9 91.5% 7.4% 5.6% 6.8% 5.8% 24% 4.3% 8.3%
avg 65.9% 13.5% 6.4% 10.8% 9.1% 5.4% 9.0% 8.7%
local 14.4% 71% 53% 7.5% 16.9%
IML 7.8% 7.3% 5.4% 7.2% 7.4%

As above, we use JOSTLE-MS as a control, two example diffusive partition-
ers, JOSTLE-MD and JOSTLE-D, and the same partition inertia variants as

SUMMARY AND FUTURE WORK xxiii

Table 1.6 Cut-weight results for the CFD graphs

JOSTLE JOSTLE(PI) JOSTLE(VPI)
G MS MD D 10:1 5:1 1:1 101 11:1
1 3.24% 3.16% 3.09% 3.01% 3.01% 3.09% 3.01% 3.09%
2 2.86% 2.86% 2.86% 3.10% 3.10% 3.10% 3.19% 3.27%
3 3.01% 3.01% 5.02% 3.18% 3.60% 4.10% 3.51% 3.43%
4 290% 3.49% 4.86% 3.49% 3.49% 4.00% 2.98% 3.49%
5 3.10% 3.63% T7.79% 3.19% 4.60% 540% 4.34% 4.16%
6 3.28% 3.56% 6.10% 3.00% 3.47% 5.72% 3.66% 4.03%
7 3.02% 287% 7.92% 3.09% 294% 5.51% 3.47% 3.32%
8 2.76% 2.76% 6.49% 2.99% 3.21% 4.63% 3.06% 3.21%
9 3.86% 2.78% 6.87% 293% 3.24% 5.95% 3.17% 3.01%
avg 3.11% 3.13% 5.67% 3.11% 3.41% 4.61% 3.38% 3.45%
local 351% 3.33% 5.23% 3.53% 3.39%
IML 2.95% 3.06% 4.64% 3.08% 3.20%

above, 10:1, 5:1, 1:1, and the variable schemes 10J}:1 and 11:1. The migration
and cut-weight results are presented in Tables 1.5 & 1.6 respectively.

As before, the average trend lines are in the right directions; from left to
right, as the vertex migration decreases, the cut-weight increases. However,
for this set of results the VPI strategy finds the best results. For example, the
10:1 weighting finds the best cut-weight (matched by JOSTLE-MS), better
than JOSTLE-MD in this case, and also manages to improve on the vertex
migration, as compared with JOSTLE-MD. Similarly, the 1:1 weighting beats
JOSTLE-D in both cut-weight and migration.

Considering the variable schemes, the choice of whether to increase or de-
crease the edge weight ratio is not as clear as in §1.4.2; the cut-weight seems
more or less constant throughout the simulation, and the migration has no
obvious trend. Nevertheless, the 10}:1 scheme improves slightly on the 5:1
weighting, whilst the 11:1 provides very similar results.

Finally, and once again, the local matching and iterated multilevel results
support the same results as before, that local matching can harm the partition
quality and that the VPI framework is both robust and flexible.

1.5 SUMMARY AND FUTURE WORK

We have presented a new framework, variable partition inertia (VPI), for the
repartitioning of adaptive unstructured meshes. It is simple to implement,
since it merely involves manipulation of the input graph (plus the minor re-
quirement that the partitioner can handle fixed vertices). In principle, it

xxiv

can therefore be used with any partitioner and the results indicate that it
is robust and flexible. Most importantly, VPI seems to afford much greater
control over the repartitioning problem than diffusive load-balancing and the
edge weighting ratio gives a powerful parameter for managing the trade-off
between cut-weight and migration.

We have also indicated a scheme for varying the edge weight ratio, based
solely on run-time instrumentation within the solver.

As part of the work, we have also demonstrated, both by example and em-
pirically, that the well-accepted local matching can damage partition quality
(albeit only a little).

In the future, it would be of interest to validate the variable edge weight
scheme by running tests alongside a genuine parallel adaptive simulation.
It would also be instructive to test the VPI framework against the scratch-
remapping schemes (see Section 1.3), currently held to be the best approach
when the mesh has undergone dramatic changes.

REFERENCES

1. V. Aravinthan, S. P. Johnson, K. McManus, C. Walshaw, and M. Cross.
Dynamic Load Balancing for Multi-Physical Modelling using Unstruc-
tured Meshes. In C.-H. Lai et al., editor, Proc. 11th Intl. Conf. Domain
Decomposition Methods, Greenwich, UK, 1998, pages 380-387. DDM.org,
www.ddm.org, 1999.

2. S. T. Barnard and H. D. Simon. A Fast Multilevel Implementation of Re-
cursive Spectral Bisection for Partitioning Unstructured Problems. Con-
currency: Practice & Experience, 6(2):101-117, 1994.

3. R. Biswas and L. Oliker. Experiments with Repartitioning and Load
Balancing Adaptive Meshes. Tech. Rep. NAS-97-021, NAS, NASA Ames,
Moffet Field, CA, 1997.

4. T. N. Bui and C. Jones. A Heuristic for Reducing Fill-In in Sparse Matrix
Factorization. In R. F. Sincovec et al., editor, Parallel Processing for
Scientific Computing, pages 445-452. STAM, Philadelphia, 1993.

5. C. M. Fiduccia and R. M. Mattheyses. A Linear Time Heuristic for Im-
proving Network Partitions. In Proc. 19th IEEE Design Automation
Conf., pages 175-181. IEEE, Piscataway, NJ, 1982.

6. B. Hendrickson and K. Devine. Dynamic Load Balancing in Computa-
tional Mechanics. Comput. Methods Appl. Mech. Engrg., 184(2-4):485—
500, 2000.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

SUMMARY AND FUTURE WORK XXV

. B. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning

Graphs. In S. Karin, editor, Proc. Supercomputing ’95, San Diego. ACM
Press, New York, 1995.

. B. Hendrickson, R. Leland, and R. Van Driessche. Enhancing Data Lo-

cality by Using Terminal Propagation. In Proc. 29th Hawaii Intl. Conf.
System Science, 1996.

.Y. F. Hu, R. J. Blake, and D. R. Emerson. An optimal migration algo-

rithm for dynamic load balancing. Concurrency: Practice € Experience,
10(6):467-483, 1998.

G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs. STAM J. Sci. Comput., 20(1):359-392,
1998.

G. Karypis and V. Kumar. Multilevel k-way Partitioning Scheme for
Irregular Graphs. J. Parallel Distrib. Comput., 48(1):96-129, 1998.

B. W. Kernighan and S. Lin. An Efficient Heuristic for Partitioning
Graphs. Bell Syst. Tech. J., 49:291-308, 1970.

K. McManus, C. Walshaw, M. Cross, P. F. Leggett, and S. P. Johnson.
Evaluation of the JOSTLE mesh partitioning code for practical multi-
physics applications. In A. Ecer et al., editor, Parallel Computational
Fluid Dynamics: Implementations and Results Using Parallel Comput-
ers, pages 673-680. Elsevier, Amsterdam, 1996. (Proc. Parallel CFD’95,
Pasadena, 1995).

F. Pellegrini and J. Roman. Experimental Analysis of the Dual Recursive
Bipartitioning Algorithm for Static Mapping. TR 1038-96, LaBRI, URA
CNRS 1304, Univ. Bordeaux I, 33405 TALENCE, France, 1996.

K. Schloegel, G. Karypis, and V. Kumar. Multilevel Diffusion Schemes
for Repartitioning of Adaptive Meshes. J. Parallel Distrib. Comput.,
47(2):109-124, 1997.

K. Schloegel, G. Karypis, and V. Kumar. Wavefront Diffusion and LMSR:
Algorithms for Dynamic Repartitioning of Adaptive Meshes. TR 98-034,
Dept. Comp. Sci., Univ. Minnesota, Minneapolis, MN 55455, 1998.

K. Schloegel, G. Karypis, and V. Kumar. Wavefront Diffusion and LMSR:
Algorithms for Dynamic Repartitioning of Adaptive Meshes. IEEE Trans.
Parallel Distrib. Syst., 12(5):451-466, 2001.

H. D. Simon. Partitioning of Unstructured Problems for Parallel Process-
ing. Computing Systems Engrg., 2:135-148, 1991.

C. Walshaw. Multilevel Refinement for Combinatorial Optimisation Prob-
lems. Annals Oper. Res., 131:325-372, 2004.

xxvi

20

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

C. Walshaw and M. Cross. Mesh Partitioning: a Multilevel Balancing
and Refinement Algorithm. STAM J. Sci. Comput., 22(1):63-80, 2000.

C. Walshaw and M. Cross. Parallel Optimisation Algorithms for Multi-
level Mesh Partitioning. Parallel Comput., 26(12):1635-1660, 2000.

C. Walshaw and M. Cross. Dynamic Mesh Partitioning and Load-Balancing
for Parallel Computational Mechanics Codes. In B. H. V. Topping, edi-
tor, Computational Mechanics Using High Performance Computing, pages
79-94. Saxe-Coburg Publications, Stirling, 2002. (Invited Chapter, Proc.
Parallel & Distributed Computing for Computational Mechanics, Weimar,
Germany, 1999).

C. Walshaw and M. Cross. Parallel Mesh Partitioning on Distributed
Memory Systems. In B. H. V. Topping, editor, Computational Mechanics
Using High Performance Computing, pages 59-78. Saxe-Coburg Publi-
cations, Stirling, 2002. (Invited Chapter, Proc. Parallel & Distributed
Computing for Computational Mechanics, Weimar, Germany, 1999).

C. Walshaw and M. Cross. JOSTLE: Parallel Multilevel Graph-Partitioning
Software — An Overview. In C.-H. Lai and F. Magoules, editors, Mesh
Partitioning Techniques and Domain Decomposition Techniques. Civil-
Comp Ltd., 2007. (Invited chapter — to appear).

C. Walshaw, M. Cross, R. Dieckmann, and F. Schlimbach. Multilevel Mesh
Partitioning for Optimising Domain Shape. Intl. J. High Performance
Comput. Appl., 13(4):334-353, 1999.

C. Walshaw, M. Cross, and M. G. Everett. Parallel Dynamic Graph Parti-
tioning for Adaptive Unstructured Meshes. J. Parallel Distrib. Comput.,
47(2):102-108, 1997.

C. Walshaw, M. Cross, and K. McManus. Multiphase Mesh Partitioning.
Appl. Math. Modelling, 25(2):123-140, 2000.

C. H. Walshaw and M. Berzins. Dynamic load-balancing for PDE solvers
on adaptive unstructured meshes. Concurrency: Practice € Experience,
7(1):17-28, 1995.

R. D. Williams. DIME: Distributed Irregular Mesh Environment. Caltech
Concurrent Computation Report C3P 861, 1990.

R. D. Williams. Performance of dynamic load balancing algorithms for
unstructured mesh calculations. Concurrency: Practice & Experience,
3:457-481, 1991.

