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A parallel method for the dynamic partitioning of unstructured
meshes is described. The method introduces a new iterative op-
timization technique known as relative gain optimization which
both balances the workload and attempts to minimize the inter-
processor communications overhead. Experiments on a series of
adaptively refined meshes indicate that the algorithm provides
partitions of an equivalent or higher quality to static partition-
ers (which do not reuse the existing partition) and much more
rapidly. Perhaps more importantly, the algorithm results in only
a small fraction of the amount of data migration compared to the
static partitioners. © 1997 Academic Press
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1. INTRODUCTION

The use of unstructured mesh codes on parallel machines
can be one of the most efficient ways to solve large compu-
tational fluid dynamics (CFD) and computational mechanics
(CM) problems. Completely general geometries and complex
behavior can be readily modeled and, in principle, the inherent
sparsity of many such problems can be exploited to obtain ex-
cellent parallel efficiencies. An important consideration, how-
ever, is the problem of distributing the mesh across the mem-
ory of the machine at runtime so that the computational load
is evenly balanced and the amount of interprocessor commu-
nication is minimized. It is well known that this problem is NP
complete, so in recent years much attention has been focused
on developing suitable heuristics, and some powerful methods,
many based on a graph corresponding to the communication
requirements of the mesh, have been devised, e.g., [2, 9, 15].

An increasingly important area for mesh partitioning arises
from problems in which the computational load varies through-
out the evolution of the solution. For example, heterogeneity
in either the computing resources (e.g., processors which are
unevenly matched or not dedicated to single users) or in the
solver (e.g., solving for flow or stress in different parts of
the domain in a multiphysics casting simulation) can result
in load imbalance and poor performance. Alternatively, time-
dependent unstructured mesh codes which use adaptive refine-
ment can give rise to a series of meshes in which the position
and density of the data points varies dramatically over the

course of an integration and which may need to be frequently
repartitioned for maximum parallel efficiency. This dynamic
partitioning problem has not been nearly as thoroughly stud-
ied as the static problem but related work can be found in [4,
5, 11, 12, 15, 18].

The dynamic evolution of load has three major influences on
possible partitioning techniques; cost, reuse, and parallelism.
First, frequent load balancing may be required and so must
have a low cost relative to that of the solution algorithm in
between. This could potentially restrict the use of high quality
partitioning algorithms but fortunately, if the mesh has not
changed too much, it is a simple matter to interpolate the
existing partition from the old mesh to the new and use this as
the starting point for repartitioning, [18]. In fact, not only is
the load balancing likely to be unnecessarily computationally
expensive if it fails to use this information, but also the
mesh elements will be redistributed without any reference to
their previous “home processor” and heavy data migration
may result. Finally, the data is distributed and so should
be repartitionedin situ rather than incurring the expense of
transferring it back to some host processor for load balancing
and some powerful arguments have been advanced in support
of this proposition, [11]. Collectively these issues call for
parallel load balancing and, if a high quality partition is
desired, a parallel optimization algorithm.

In this paper we describe such a parallel optimization tech-
nique (Sect. 2) which incorporates a distributed load-balancing
algorithm and which provides an extremely fast solution to the
problem of dynamically load-balancing unstructured meshes.
In addition, a parallel graph contraction technique (described
in Sect. 3) can be employed to enhance the partition quality
and the resulting strategy (which can also be applied to static
partitioning problems) outperforms or matches results from
existing state-of-the-art static mesh partitioning algorithms.

Here, in particular, we focus on the case arising from
adaptively refined meshes where we assume that the mesh
will be repartitioned after each refinement phase. However,
the method is also applicable to the more general case
where load may be constantly varying, and in [1] a method
for determining how frequently to partition (for maximum
efficiency) is described, together with examples using the same
partitioning techniques.
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1.1. Notation and Definitions

Let G = G(V, E) be an undirected graph ofV vertices withE
edges which represent the data dependencies in the mesh and
let P be a set of processors. We assume that both vertices and
edges are weighted (with positive integer values) and that|v|
denotes the weight of a vertexv, |S| :=

∑
v∈S |v| the weight

of a subsetS ⊂ V and similarly for edges. Once the vertices
are partitioned into|P| sets we denote the subdomains bySp,
for p ∈ P and the optimal subdomain weight is given byW :=
d|V |/|P|e. We denote the set of cut (or intersubdomain) edges
by Ec and the border of each subdomain,Bp, is defined as the
set of vertices inSp which have an edge inEc. We shall use
the notation↔ to mean “is adjacent to,” for example, foru,
v ∈ V, u↔ v if there exists (u, v) ∈ E.

The definition of the graph-partitioning problem is to
partition the vertices,V, into |P| disjoint sets, one per
processor, such that the load or vertex weight in each
subdomain is evenly balanced while the communications cost
is minimized. More precisely we seek a partition such that
Sp ≤ W for p ∈ P (although this is not always possible for
graphs with non-unitary vertex weights) and such that|Ec| is
minimized (though see Sect. 2.2).

1.2. Parallelization

The algorithms described run equally well in parallel or in
serial and for the parallel version we use the single program,
multiple data (SPMD) paradigm with message passing in the
(reasonable) expectation that the underlying unstructured mesh
application will do the same. (If the mesh application does
not use partitioned data, why would it need to call a graph
partitioner?) To this end, each processor is assigned to a
subdomain and stores a double linked-list of the vertices within
that subdomain. However, each processor also maintains a read
only “halo” of neighboring vertices in other subdomains. For
the serial version the migration of vertices simply involves
transferring them from one linked-list to another. In parallel,
however, this task is far more complicated as migrating
vertices, together with newly created halo vertices, must be
packed into messages, sent off to the destination processor,
unpacked, and the pointer based data structure recreated there.
In addition, “halo updates” must be regularly carried out to
inform neighboring processors of new values attached to their
halo vertices. Since the existence of|V | length arrays is simply
not scalable in memory terms, location of vertices locally on
a processor is carried out using their global index and some
sophisticated hash table and binary tree searches.

2. OPTIMIZATION

In this section we present a new parallel iterative algorithm
for load-balancing and optimizing unstructured mesh parti-
tions. The method is based on the concept ofrelative gain,
also described in [16] and, in common with similar techniques,
e.g., [9], we localize the vertex migration with respect to the
current partition by only allowing vertices on subdomain bor-

ders to migrate to neighboring subdomains (i.e., to subdomains
in which a neighboring vertex lies).

2.1. Load-balancing

The method includes an iterative load-balancing scheme
which runs alongside the optimization to evenly distribute the
workload over the processors. The generalized load-balancing
problem is a very important area for research in its own
right with a vast range of applications and here we use an
elegant technique developed by Hu and Blake, [8]. It is related
to the commonly used diffusive methods, e.g., [3], but has
faster convergence and minimizes the Euclidean norm of the
transferred weight. The algorithm simply involves solving the
systemLx = b, whereL is the Laplacian of the subdomain
graph, (Lpp = degree(Sp); Lpq = −1 if Sp ↔ Sq, Lpq = 0
otherwise),bp = |Sp| − W and the weight to be transferred
across edge (Sp, Sq) is then given byxp − xq. Typically
this system is solved iteratively with a conjugate gradient
algorithm and is similar to diffusive methods in that each
step is like a diffusive step, but with the diffusion coefficients
being determined iteratively using a conjugate gradient search
rather than being fixed throughout the procedure. Since the
subdomain graph is connected (which it must be since we
have assumed that the original graph is connected) Hu and
Blake demonstrate that the conjugate gradient iterations are
guaranteed to converge in less than|P| − 1 iterations and
often much faster than that if the subdomain graph has special
structure, [8]. In practice, we found that convergence was
usually reached within 10 iterations for the examples presented
in Section 4; in the configurations using graph reduction (Sect.
3) this is reduced still further in the final levels of optimization,
as balance is already achieved on the coarser graphs.

This algorithm (or, in principle, any other distributed load-
balancing algorithm) then determines how much weight to
transfer across the edges of the subdomain graph and we use
fpq to denote the required flow fromSp to Sq. Note that the
flow is positive (fpq ≥ 0) and unidirectional (i.e., iffpq > 0
then fqp = 0 and vice versa) and even if this is not the case
we can force it to be so by settingfpq = fpq − max(fpq, fqp)
and fqp = fqp − max(fpq, fqp). Note also that if there is not a
sufficient weight of vertices in a particular border to satisfy
the required flow, then outstanding flow is recorded and added
in at the next iteration.

2.2. The Gain and Preference Functions

A key concept in many graph partition optimization algo-
rithms is the idea of gain and preference functions. Loosely,
the gaing(v, q) of a vertexv in subdomainSp can be calculated
for every other subdomain,Sq, q ≠ p, and expresses some “es-
timate” of how much the partition would be “improved” were
v to migrate toSq. The preferencef (v) is then just the value
of q which maximizes the gain—i.e.,f (v) = q whereg(v, q)
attains maxr∈P g(v, r).

The gain is usually directly related to some cost function
which measures the quality of the partition and which we aim



104 WALSHAW, CROSS, AND EVERETT

to minimize. Typically the cost function used is simply the
total weight of cut edges,|Ec|, and then the gain expresses
the change in|Ec|. More recently, however, there has been
some debate about the most important quantity to minimize
and in [14], Vanderstraetenet al. demonstrated that it can
be extremely effective to vary the cost function based on a
knowledge of the solver. Meanwhile, in [17] we showed that
the architecture of the parallel machine and how the partition
is mapped down onto its communications network can also
play an important role. Whichever cost function is chosen,
however, the idea of gains is generic. For the purposes of this
paper we shall assume that the gaing(v, q) just expresses the
reduction in the cut-edge weight,|Ec|.

2.3. Relative Gain Optimization

Having determined the required flow across the edges of the
subdomain graph (Sect. 2.1) we need to migrate vertices from
adjacent subdomains in order to satisfy that flow. Choosing
appropriate vertices to migrate is not an easy task because
we also wish to optimize the partition quality with respect
to the cost function. Indeed, in order to obtain partitions of
the highest quality, it is likely that vertices will need to be
exchanged even if there is no flow required. Simply moving
vertices with the highest gain is not a satisfactory solution,
however, as it means that adjacent vertices may be swapped
simultaneously (an event often known as a collision) and this
may lead to anincrease in the cost. We have previously
addressed this problem by using a Kernighan–Lin (KL) type
algorithm run in the boundary regions alone, [15], but this
causes a loss of efficiency in parallel because, in order to retain
the hill-climbing abilities of the algorithm, processors must
maintain edges between halo vertices and this turns out to be
a costly task. In addition, we have tried a red–black coloring
strategy where, at each iteration, vertices from only one of
each pair of neighboring subdomains are migrated, [16]. The
algorithm is fast and efficient but we have not succeeded in
generating the highest quality of partitions using this technique
which has been independently investigated by Karypis and
Kumar, [10]. Here, however, we introduce a new strategy
which uses the concept ofrelative gain.

Bulk Migration. The optimization takes a series of itera-
tive steps in which vertices may be migrated from every sub-
domain,Sp, to each of its neighbors {Sq : Sq↔ Sp}. The first
part of each iterative step is to use a simple formula based
on both the flow and the total weight of vertices with positive
gain to determine how much total load to migrate. First, for
the interface between subdomainsSp andSq, define border re-
gions,Bpq, as the set of vertices inBp (the border ofSp) whose
preference isq, i.e., Bpq = {v ∈ Bp : f (v) = q} and let gpq be
the total weight of vertices inBpq with gain > 0 (and similarly
for Bqp andgqp). Then if d = max(gpq − fpq + gqp − fqp, 0), the
load to be migrated fromSp to each neighborSq, is set toapq

= fpq + d/2.

To motivate this formula a little consider the following. First
of all, the amount of load to be migrated,apq, is decided
by satisfying any required flow,fpq, and we assume that this
takes place by migrating vertices with the highest positive gain.
Thus, after the flow has been satisfied the amount of vertices
with positive gain is approximately given byGpq = gpq − fpq +
gqp − fqp. It could be argued that this will be an underestimate
if fpq > gpq, but in this case the scheme is cautious rather than
reckless. At this point we wish, in a similar manner to the
KL algorithm, to swap vertices so that none with a positive
gain remain. After some experimentation we have found that
simply movingGpq/2 from Sp to Sq and vice versa, ensures
fast and effective optimization provided the vertices are chosen
carefully.

Relative Gain. To determine which vertices to migrate we
use the concept of relative gain which we define as follows;
for a vertex v ∈ Bpq let 0q(v) be the set of vertices in
Bqp adjacent tov, i.e., 0p(v) = {u ∈ Bqp : u ↔ v}. The
relative gain of a vertexv is then defined asg(v, q) −∑

u∈0q(v)
q(u, p)/O[0q(v)] (where O[0q(v)] represents the

number of vertices in0q(v)). Put more simply, the relative
gain of a vertexv is just the gain ofv less the average gain
of opposing vertices, and gives an indication of which are the
best vertices to move in order to avoid collisions. Thus, to
prioritize the migration, for each subdomainSp, vertices in
each borderBpq are sorted by relative gain, largest first, and
a weight ofapq is migrated toSq according to this ordering.
The sorting carried out need not be a full sort since it is only
necessary to determine the level of relative gain below which
no vertices will be moved and we have implemented a simple
set-based sort on this basis. For the parallel version, at each
iteration the gains of border vertices are calculated locally (in
parallel) and propagated to neighboring processors via a halo
update operation (Sect. 1.2) and then the relative gains may
be calculated locally.

Convergence. The algorithm is not as predictable as either
Kernighan–Lin optimization, or the red–black scheme men-
tioned above, which can both predict exactly the improvement
in cost for a bipartition and fairly accurately for a multiway
partition. However, although the relative gain gives no more
than an indication of which vertices to move, in practice it
works very effectively and collisions are rare since the for-
mulation takes into account the likelihood of opposite ver-
tices migrating. The method usually converges robustly with
the global cost,|Ec|, decreasing monotonically, but because of
this impreciseness, it is necessary to prevent cyclic “thrashing”
by terminating the optimization after a couple of iterations if
the cost has not decreased.

3. GRAPH REDUCTION

The algorithm described above provides what is essentially
very localized optimization and it has been recognized for
some time that an effective way of both speeding up optimiza-
tion and, perhaps more importantly, giving it a more global
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perception is to use graph reduction. The idea is to group ver-
tices together to formclusters, use the clusters to define a new
graph, recursively iterate this procedure until the graph size
falls below some threshold, and then successively optimize
these reduced size graphs. It is a common technique and has
been used by several authors in various ways—for example,
in a multilevel way analogous to multigrid techniques, [2, 7],
and in an adaptive way analogous to dynamic refinement tech-
niques, [18]. Several algorithms for carrying out the reduction
can be found in [9].

Reduction. To create a coarser graphG′(V ′, E′) from G(V,
E) we use a variant of the edge contraction algorithm proposed
by Hendrickson and Leland [7], and improved by Karypis and
Kumar in [9]. The idea is to find a maximal independent subset
of graph edges and then collapse them. The set is independent
because no two edges in the set are incident on the same vertex
(so no two edges in the set are adjacent) and maximal because
no more edges can be added to the set without breaking the
independence criterion. Having found such a set, each selected
edge is collapsed and the vertices,u1, u2 ∈ V say, at either
end of it are merged to form a new vertexv ∈ V ′ with
weight |v| = |u1|+ |u2|. Edges which have not been collapsed
are inherited by the reduced graph and, where they become
duplicated, are merged with their weight summed. This occurs
if, for example, the edges (u1, u3) and (u2, u3) exist when edge
(u1, u2) is collapsed. Because of the inheritance properties of
this algorithm, it is easy to see that the total graph weight
remains the same,|V | = |V ′|, and the total edge weight is
reduced by an amount equal to the weight of the collapsed
edges.

Parallel Matching. A simple way to construct a maximal
independent subset of edges is to visit the vertices of the
graph in a random order and pair up or match unmatched
vertices with an unmatched neighbor. It has been shown, [9],
that it can be beneficial to the optimization to collapse the
most heavily weighted edges and our matching algorithm uses
this heuristic. For the parallel version we use more or less the
same procedure: each processor visiting in parallel the vertices
that it owns. We modify the matching algorithm, however, by
always matching with a local vertex in preference to a vertex
owned by another processor. The local matching can then take
place entirely in parallel but usually leaves a few boundary
vertices who have no unmatched local neighbors but possibly
some unmatched nonlocal neighbors.

The simplest solution would be to terminate the matching
at this point. However, in the worst-case scenario if the
initial partition is particularly bad and most vertices have no
local neighbors (for example a random partition), little or no
matching may have taken place. We therefore continue the
matching with a parallel iterative procedure which finishes
only when there are no vertices unmatched. Vertices which
are matched across interprocessor boundaries are migrated to
one of the two owning processors and then the construction

of the reduced graph can take place entirely in parallel. The
algorithm is fully described in [16].

4. EXPERIMENTAL RESULTS

The software tool which we have used to test the optimiza-
tion and graph reduction algorithms is known as JOSTLE and
is available fromhttp://www.gre.ac.uk/ ∼c.walshaw/

jostle . For the purposes of this paper it is run in three
configurations, dynamic (JOSTLE-D), multilevel-dynamic
(JOSTLE-MD) and multilevel-static (JOSTLE-MS). The dy-
namic configuration, JOSTLE-D, reads in an existing partition
and uses the algorithm described in Section 2 to balance and
optimize the partition. The multilevel-dynamic, JOSTLE-MD,
uses the same procedure but additionally uses graph reduction
(Sect. 3) down to a threshold of 20 vertices per processor to
improve the partition quality. The static version, JOSTLE-MS,
carries out graph reduction on the unpartitioned graph to
reduce the graph to|P| vertices which are randomly assigned
to partitions and then uses the algorithm described in Section
2 to optimize each of the multilevel graphs.

The test meshes have been taken from an example contained
in the DIME (distributed irregular mesh environment) software
package freely available by anonymous ftp. The particular
application solves Laplace’s equation with Dirichelet boundary
conditions on a square domain with an S-shaped hole and
using a triangular finite element discretization. The problem
is repeatedly solved by Jacobi iteration, refined based on
this solution, and then load balanced. A very similar set of
meshes has previously been used for testing mesh partitioning
algorithms and details about the solver, the domain, and DIME
can be found in [19]. The particular series of ten meshes and
the resulting graphs that we used range in size from the first
one which contains 23,787 vertices and 35,281 edges to the
final one which contains 224,843 vertices and 336,024 edges.
We were unable to run the adaptivity and solver in parallel,
but the serial runtime a Sun SPARC Ultra with a 140 MHz
CPU was about 12,000 s. The example includes only mesh
refinement and not mesh coarsening, but the same algorithms
have been successfully tested on time-dependent problems
with both coarsening and refinement although the results are
commercially sensitive and cannot be used here. In addition,
dynamic load-balancing results on a fixed mesh with variable
processing resources can be found in [1].

4.1. Comparison Results

In order to demonstrate the quality of the partitions we have
compared the method with three of the most popular partition-
ing schemes, METIS, GREEDY, and multilevel recursive spec-
tral bisection (MRSB). Of the three METIS is the most similar
to JOSTLE, employing a graph reduction technique and iter-
ative optimization. The version used here iskmetis from the
most recent public distribution available by anonymous ftp,
[9]. The GREEDY algorithm, [6], is actually performed as
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TABLE I
Average Results over the 9 Meshes

|P| = 16 |P| = 32 |P| = 64

Method |Ec| t (s) M % |Ec| t (s) M % |Ec| t (s) M %

JOSTLE-D 942 0.51 0.54 1551 0.64 1.80 2598 0.85 3.76

JOSTLE-MD 846 2.39 4.92 1447 2.60 6.26 2410 3.02 8.82

JOSTLE-MS 879 3.96 93.96 1488 4.19 92.77 2417 4.95 99.00

METIS 913 4.83 94.36 1543 4.91 95.94 2427 5.15 97.95

MRSB 939 55.85 83.54 1577 71.42 90.01 2520 87.34 95.07

GREEDY 1816 0.77 81.62 2897 0.83 90.64 4300 1.00 94.42

part of the JOSTLE-MS configuration and is fast but not
particularly good at minimizing|Ec|. MRSB, on the other
hand, is a highly sophisticated method, good at minimizing
|Ec| but suffering from relatively high runtimes, [2]. The
MRSB code was made available to us by one of its authors,
Horst Simon, and run unchanged with a contraction thresholds
of 100.

The following experiments were carried out in serial on a
Sun SPARC Ultra with a 140 MHz CPU and 64 Mbytes of
memory. We use three metrics to measure the performance
of the algorithms—the total weight of cut edges,|Ec|, the
execution time in seconds of each algorithm,t(s), and the
percentage of vertices which need to be migrated,M.

For the two dynamic configurations, the initial mesh is par-
titioned with the static version—JOSTLE-MS. Subsequently
at each refinement, the existing partition is interpolated onto
the new mesh using the techniques described in [18] and the
new partition is then optimized and balanced. For the exper-
iments reported here, since there is only refinement and no
coarsening, the mapping of the new partition to the proces-
sors is the canonical one and new elements are assigned to the
processor to which their parent was assigned while existing
elements are simply assigned to the same partition as before;
for more complicated situations the use of a “smart” mapping
such as that employed by JOVE might be beneficial, [13].

Table I compares the six different partitioning methods
for |P| = 16, 32, and 64 with the results averaged over
the last 9 meshes (i.e., not including the static partitioning
results for the first mesh). The high quality partitioners—both
JOSTLE multilevel configurations, METIS, and MRSB—all
give similar values for|Ec| with MRSB giving marginally
the worst results and JOSTLE-MD giving the best. It is
not clear why JOSTLE-MS gives slightly worse results than
JOSTLE-MD, possibly this is as a result of using parallel graph
reduction rather than serial. In general, JOSTLE-D, without
the benefit of graph reduction, provides slightly lower quality
partitions but approximately equivalent to those of MRSB. In
terms of execution time, JOSTLE-D is slightly faster than
GREEDY with both of them being much faster than any
of the multilevel algorithms. Of these multilevel algorithms,
however, JOSTLE-MD is considerably faster than JOSTLE-

MS and METIS, and MRSB is by far the slowest. It is the final
column which is perhaps the most telling though. Because the
static partitioners take no account of the existing distribution
they result in a vast amount of data migration. The dynamic
configurations, JOSTLE-D and JOSTLE-MD, on the other
hand, migrate very few of the vertices. As could be expected
JOSTLE-MD migrates somewhat more than JOSTLE-D since
it does a more thorough optimization.

Taking the results as a whole, the multilevel-dynamic
configuration, JOSTLE-MD, provides the best partitions very
rapidly and with very little vertex migration. If a slight
degradation in partition quality can be tolerated, the JOSTLE-
D configuration load balances and optimizes even more
rapidly, faster than the GREEDY algorithm, with even less
vertex migration. However, JOSTLE-D is essentially only a
local optimization method and for robustness JOSTLE-MD is
to be preferred. Possibly the ideal solution (which we have not
tested) would be a combination of the two—using JOSTLE-
D most of the time and JOSTLE-MD occasionally both on a
regular basis or if the mesh is known to have changed a great
deal.

With regard to the load balancing, all the algorithms resulted
in partitions with less than 1% load imbalance (i.e., max|Sp|/
W < 1.01), with the direct partitioners GREEDY and MRSB
giving exact balance. The dynamic JOSTLE configurations,
JOSTLE-D and JOSTLE-MD, started their partitioning on
unbalanced partitions with varying degrees of imbalance,
which averaged out to about 7% for|P| = 16, 12% for
|P| = 32, and 17% for|P| = 16. This is not an extreme
example of imbalance but is still enough to badly slow down
the computation, especially in the light of the computational
runtime relative to the costs of repartitioning.

4.2. Parallel Timings

Achieving high parallel performance for parallel partitioning
codes such as JOSTLE is not as easy as, say, a typical CFD or
CM code. For a start the algorithms use only integer operations
and so there are no MFlops to “hide behind.” In addition, most
of the work is carried out on the subdomain boundaries and so
very little of the actual graph is used. Also the partitioner itself
may not necessarily be well load balanced and the communi-
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TABLE II
Serial and Parallel Timings for the JOSTLE-D and JOSTLE-MD Configurations

|P| = 16 |P| = 32 |P| = 64

V E ts(s) tp(s) speed up ts(s) tp(s) speed up ts(s) tp(s) speed up

JOSTLE-D

31172 46309 0.26 0.06 4.33 0.32 0.06 5.33 0.42 0.07 6.00

40851 60753 0.34 0.07 4.86 0.44 0.07 6.29 0.59 0.08 7.37

53338 79415 0.38 0.06 6.33 0.55 0.08 6.88 0.78 0.11 7.09

69813 104034 0.56 0.10 5.60 0.71 0.09 7.89 0.85 0.13 6.54

88743 132329 0.71 0.13 5.46 0.82 0.10 8.20 1.00 0.09 11.11

115110 171782 0.82 0.11 7.45 1.03 0.11 9.36 1.30 0.11 11.82

146014 218014 1.14 0.16 7.12 1.29 0.13 9.92 1.60 0.13 12.31

185761 277510 1.47 0.21 7.00 1.58 0.15 10.53 2.06 0.16 12.88

224843 336024 1.63 0.19 8.58 1.97 0.18 10.94 2.30 0.14 16.43

JOSTLE-MD

31172 46309 0.93 0.35 2.66 1.12 0.26 4.31 1.42 0.25 5.68

40851 60753 1.25 0.40 3.12 1.50 0.32 4.69 1.99 0.32 6.22

53338 79415 1.53 0.97 1.58 1.73 0.30 5.77 2.25 0.32 7.03

69813 104034 1.99 0.48 4.15 2.22 0.32 6.94 2.73 0.33 8.27

88743 132329 2.44 0.49 4.98 2.83 0.40 7.08 3.34 0.38 8.79

115110 171782 3.15 0.61 5.16 3.51 0.44 7.98 4.13 0.39 10.59

146014 218014 3.98 0.75 5.31 4.58 0.56 8.18 5.39 0.55 9.80

185761 277510 5.03 0.87 5.78 5.50 0.63 8.73 6.45 0.55 11.73

224843 336024 6.04 0.95 6.36 6.66 0.67 9.94 7.66 0.59 12.98

cations cost may dominate on the coarsest reduced graphs
since at this stage there are very few vertices per processor. On
the other hand, as was explained in Section 1, partitioning on
the host may be impossible or at least much more expensive
and if the cost of load balancing is regarded (as it should
be) as a parallel overhead, it is usually extremely inexpensive
relative to the overall solution time of the problem. Indeed if
the reverse is true, it may not be worth load balancing at all,
e.g., [1].

Table II gives serial and parallel timings for the JOSTLE-
D and JOSTLE-MD configurations on the 512 node Cray
T3E at HLRS, the High Performance Computer Centre at
the University of Stuttgart. The parallel version uses the
MPI communications library although we are working on
a shmem version which could be expected to show even
faster timings. The parallel timings generally decrease as|P|
increases although this is not so true on the smaller meshes
and especially for JOSTLE-D. We believe that this is because
there is so little computational work that these figures just show
parallel communication overhead; dividing the serial time by
|P| to estimate the parallel computational work suggests that
this is the case. However, these figures show good speedups
for this sort of code and more importantly, very low overheads

(always less than a second) for the parallel partitioning. Finally
note that the partitions obtained for the parallel version of
JOSTLE are exactly the same as those of the serial version.

5. CONCLUSION

We have described a new method for optimizing and
load balancing graph partitions with a specific focus on its
application to the dynamic mapping of unstructured meshes
onto parallel computers. In this context the graph-partitioning
task can be very efficiently addressed by reoptimizing the
existing partition, rather than starting the partitioning from
afresh. For the experiments reported in this paper, which are
somewhat limited in that they only involve adaptive mesh
refinement and not coarsening, the dynamic procedures are
much faster than static techniques, provide partitions of similar
or higher quality and, in comparison, involve the migration of
a fraction of the data.
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