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Abstract

Three parallel optimisation algorithms, for use in the context of multilevel graph parti-

tioning of unstructured meshes, are described. The ®rst, interface optimisation, reduces the

computation to a set of independent optimisation problems in interface regions. The next,

alternating optimisation, is a restriction of this technique in which mesh entities are only al-

lowed to migrate between subdomains in one direction. The third treats the gain as a potential

®eld and uses the concept of relative gain for selecting appropriate vertices to migrate. The

results are compared and seen to produce very high global quality partitions, very rapidly. The

results are also compared with another partitioning tool and shown to be of higher quality

although taking longer to compute. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many of todays computational modelling challenges are of a size and complexity
that requires the solution to be calculated in parallel on an unstructured mesh.
Distributing the mesh across a parallel computer so that the computational load is
evenly balanced and the data locality maximised is known as mesh partitioning and is
often achieved by partitioning a graph corresponding to the communication re-
quirements of the mesh. A particularly popular and successful class of algorithms
which address this partitioning problem are known as multilevel algorithms. They
usually combine a graph contraction algorithm which creates a series of progressively
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smaller and coarser graphs together with a local optimisation method which, starting
with the coarsest graph, re®nes the partition at each graph level. In this paper, we
present three parallel optimisation algorithms for re®ning a partition and if neces-
sary balancing the load. We also present an enhancement of the technique which uses
imbalance to achieve higher quality partitions.

In particular, the algorithms described in this paper are designed to address the
three problems that arise in partitioning of unstructured ®nite element and ®nite
volume meshes. Speci®cally the problems of:

(i) static partitioning (the classical problem) which arises in trying to distribute an
existing mesh amongst a set of processors;
(ii) static load-balancing which arises from a mesh that has been generated in par-
allel;
(iii) dynamic load-balancing/partitioning which arises from either adaptively re®ned
meshes, or meshes in which the computational workload for each mesh entity can
vary with time or even machines on which (due to external user load) the compu-
tational resources may vary.

In the cases (ii) and (iii), the initial data can be represented by a distributed graph
which may be neither load-balanced nor optimally partitioned. However, it is fairly
clear that this should be repartitioned in parallel rather than shipping the graph back
to some host processor, e.g., [34]. On the other hand, it could be argued that case (i)
can be handled by a serial algorithm (of which many exist) but this is unattractive for
many reasons. Firstly, an O�N� start-up cost for the mesh partitioning may not be
acceptable if the solver will subsequently be running at O�N=P�. Indeed the graph
may not even ®t into the memory of the host machine and thus incur enormous
delays through memory paging. Finally, assuming that a parallel machine is avail-
able to run the solver, it makes sense to also use it for the initial partition.

With this in mind, our focus has always been to develop parallel optimisation-
based partitioning algorithms (rather than serial direct algorithms) in order to
handle all three problems at once. In this paper, we concentrate on the static case, (i),
where the mesh is initially read in from ®le in parallel giving a crude but fast initial
distribution. However, the techniques described contain a load-balancing compo-
nent and seem well able to handle the static and dynamic load-balancing problems,
(ii) and (iii), and this has been demonstrated for one of the algorithms in the dynamic
case [3,34].

1.1. Overview

This paper contains a synopsis of research at the University of Greenwich that has
taken place over the past ®ve years into parallel optimisation algorithms for mul-
tilevel mesh partitioning. To introduce the subject, in Section 2, we describe the
multilevel paradigm and give a summary of a new enhancement, the idea of a
multilevel balancing schedule (previously used with a serial multilevel partitioner in
[31]). In Section 3, we then describe three di�erent parallel optimisation algorithms
which both balance a partition of the graph to within some given tolerance and also
re®ne the quality in terms of the weight of cut edges. In Section 4, we present results
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and comparisons of the three optimisation algorithms together with a hybrid scheme
and a comparison with ParMETIS, another parallel partitioner [21]. Finally in
Section 5, we draw some conclusions and present some ideas for further investiga-
tion. Related work in the area is discussed in Section 1.3.

The primary new development of the paper is the interface optimisation algorithm
(Section 3.4) and the main focus is to compare it with two competing algorithms (to
which some enhancements have been made) within the context of multilevel mesh
partitioning. Unifying ideas behind all three algorithms are:
· The inclusion of a load-balancing component in order that the algorithms can suc-

cessfully handle the three partitioning problems described above.
· The use of variable imbalance tolerances within a multilevel context to enhance

the optimisation.
Some key parts of the paper are:
· The motivation behind di�erent algorithms, Section 3.3.1.
· The impact of the initial distribution on the ®nal partition, Section 4.4.

1.2. Notation and de®nitions

Let G � G�V ;E� be an undirected graph of vertices V, with edges E which rep-
resent the data dependencies in the mesh. The graph vertices can either represent
mesh nodes (the nodal graph), mesh elements (the dual graph), a combination of
both (the full or combined graph) or some special purpose representation to model
the data dependencies in the mesh. We assume that both vertices and edges can be
weighted (with positive integer values) and that jvj denotes the weight of a vertex v
and similarly for edges and sets of vertices and edges. Given that the mesh needs to
be distributed to P processors, de®ne a partition p to be a mapping of V into P
disjoint subdomains Sp such that

S
P Sp � V . The partition p induces a subdomain

graph, Gp�S; L�, on G; there is an edge or link �Sp; Sq� in L if there are vertices
v1; v2 2 V with �v1; v2� 2 E and v1 2 Sp and v2 2 Sq and the weight of a subdomain is
just the sum of the weights of the vertices in the subdomain, jSpj �

P
v2Sp
jvj. We

denote the set of inter-subdomain or cut edges (i.e., edges cut by the partition) by Ec

(note that the total weight of cut edges jEcj � jLj the total weight of edges in the
subdomain graph). Vertices which have an edge in Ec (i.e., those which are adjacent
to vertices in another subdomain) are referred to as border vertices. Finally, note that
we use the words subdomain and processor more or less interchangeably: the mesh is
partitioned into P subdomains; each subdomain Sp is assigned to a processor p and
each processor p owns a subdomain Sp.

The de®nition of the graph partitioning problem is to ®nd a partition which
evenly balances the load (i.e., vertex weight) in each subdomain whilst minimising
the communications cost. To evenly balance the load, the optimal subdomain weight
is given by S :� djV j=Pe (where the ceiling function dxe returns the smallest integer
greater than x) and the imbalance is then de®ned as the maximum subdomain weight
divided by the optimal (since the computational speed of the underlying application
is determined by the most heavily weighted processor). As is usual, throughout this
paper the communications cost will be estimated by jEcj, the weight of cut edges or
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cut-weight, although see Section 3.2 for further discussion on this point. A more
precise de®nition of the graph partitioning problem is therefore to ®nd p such that
Sp6 S and such that jEcj is minimised. Note that perfect balance is not always
possible for graphs with non-unitary vertex weights.

1.3. Related work

Whilst there has been a considerable amount of research into mesh partitioning
recently, little of it seems to be speci®cally on the parallel solution of the graph
partitioning problem. Nonetheless, a number of parallel methods do exist. The
multilevel recursive spectral bisection algorithm [2], has been parallelised [1]; this
greatly improves the performance but the algorithm is still relatively slow (because of
the need to ®nd eigenvectors of a graph and the resulting requirement for expensive
¯oating point linear algebra). A similar problem arises for HARP [28], a parallel
spectral inertia bisection algorithm, although once the eigenvectors are calculated
initially (and possibly o�-line) the algorithm can be repeatedly used for dynamically
load-balancing graphs where the graph weights change (providing the edge topology
remains ®xed). A number of parallel single-level algorithms have also been devel-
oped, such as [4,8,9,24], however without the global view provided by the multilevel
techniques it is unclear whether such methods can achieve the highest quality par-
titions and they are often more suited to incremental dynamic partitioning and load-
balancing where the existing partition may already be of high quality.

Most closely related to the work presented here is the parallel graph partitioner
ParMETIS of Karypis and Kumar [21,26]. This uses an alternating tolerance-based
optimisation algorithm similar to the one described in Section 3.5 (although we have
additionally enhanced the algorithm with the use of a multilevel balancing schedule,
Section 2.3, and by incorporating ¯ow directly into the optimisation process). Per-
haps the major di�erence in strategy is the approach to vertex migration. ParMETIS
uses virtual migration and so the graph distribution is ®xed throughout the opti-
misation and vertices which migrate from one subdomain to another simply have
their subdomain ®eld changed and thus a processor may own subsets of several (or
even all) subdomains. In the algorithms described here, each subdomain is mapped
to a single processor and vertices which migrate from one subdomain to another are
actually copied and recreated on the destination processor (described in [32]). The
e�ects of these di�erent strategies on the optimisation are discussed in Section 4.3.

2. The multilevel paradigm

In recent years, it has been recognised that an e�ective way of both speeding up
partition re®nement and, perhaps more importantly, giving it a global perspective is
to use multilevel techniques. The idea is to group vertices together to form clusters,
use the clusters to de®ne a new graph and recursively iterate this procedure to create
a series of increasingly coarse graphs until the size of the coarsest graph falls below
some threshold. A fast and possibly crude initial partition of the coarsest graph is
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calculated and then successively interpolated onto and optimised on each of the
graphs in reverse order. This sequence of contraction followed by repeated inter-
polation/optimisation is known as the multilevel paradigm and has been successfully
developed as a strategy for overcoming the localised nature of the Kernighan±Lin
(and other) algorithms. The multilevel idea was ®rst proposed by Barnard and Simon
[2], as a method of speeding up spectral bisection and improved by both Hend-
rickson and Leland [17] and Bui and Jones [5], who generalised it to encompass local
re®nement algorithms.

2.1. Graph contraction

To create a coarser graph Gl�1�Vl�1;El�1� from Gl�Vl;El�, we use a variant of the
graph contraction algorithm proposed by Hendrickson and Leland [16]. The idea is
to ®nd a maximal independent subset of graph edges or matching of graph vertices
and then collapse them. The set is independent if no two edges in the set are incident
on the same vertex (so no two edges in the set are adjacent), and maximal if no more
edges can be added to the set without breaking the independence criterion. Having
found such a set, each selected edge is collapsed and the vertices, u1; u2 2 Vl say, at
either end of it are merged to form a new vertex v 2 Vl�1 with weight jvj � ju1j � ju2j.
Edges which have not been collapsed are inherited by the child graph, Gl�1, and,
where they become duplicated, are merged with their weight summed. This occurs if,
for example, the edges �u1; u3� and �u2; u3� exist when edge �u1; u2� is collapsed. Due
to the inheritance properties of this algorithm, it is easy to see that the total graph
weight remains the same, jVl�1j � jVlj, and the total edge weight is reduced by an
amount equal to the weight of the collapsed edges. A full description of the parallel
implementation of the matching techniques and the construction of the coarsened
graph can be found in [34].

2.2. The initial partition and the global graph

The normal practice of the serial multilevel strategy is to construct the series of
graphs until the number of vertices in the coarsest graph is smaller than some
threshold and then carry out an initial partition. In parallel, the graph is already
distributed and so an initial partition already exists. Here, following the idea of
Gupta [14], we continue coarsening until the number of vertices in the coarsest graph
is the same as the number of subdomains, P, and this gives us automatically an initial
partition with one vertex per subdomain. However, although contraction down to a
single vertex per subdomain is rapid in serial (since at the coarsest levels the graphs
become very small indeed), in parallel it can be relatively ine�cient since each con-
traction may involve several communication phases. For this reason, once the size of
the graph falls below a given threshold, each processor broadcasts its portion so that
every processor has a copy of the entire graph (which we refer to as the global graph).
The contraction and interpolation/optimisation process can then continue entirely in
serial with every processor duplicating the work. The serial algorithms used are
described in full in [31], although essentially the techniques are very similar to those
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discussed here and in particular the serial optimisation algorithm which incorporates
¯ow-based load-balancing, Kernighan±Lin style hill-climbing, Fiduccia±Mattheyses
style bucket sorting and imbalance tolerance is similar to that described here as the
interface optimisation algorithm, Section 3.4. The optimum threshold at which to
construct the global graph is of course machine dependent (based on the ratio of the
cost of communication and computation) but the default setting (which can be reset
at run-time) for the results in this paper is 20 vertices per processor.

2.3. Multilevel balancing schedule

It has been noted previously that allowing a small amount of imbalance often
leads to a higher partition quality. We also observe that one of the most attractive
features of the multilevel paradigm is the way in which the partition quality (usually
the number of cut edges) is re®ned gradually as the multilevel optimisation proceeds;
i.e., after each re®nement, the partition quality of a given graph Gl is usually better
than that of Gl�1 (because there are more degrees of freedom). We combine both
observations (imbalance can lead to higher partition quality and gradual re®nement
of quality being an attractive feature) by allowing a variable amount of imbalance
which is reduced gradually as the multilevel optimisation proceeds. The idea is that
by allowing a large imbalance in the coarsest graphs a better partition may be found
than if balance was rigidly enforced, but that this imbalance will not cause degra-
dation in the ®nal partition of the ®nest graph if removed gradually throughout the
multilevel procedure. Note particularly the second statement; if the ®nest graph
starts the re®nement with a high quality but poorly balanced partition, then much of
the quality may be destroyed by balancing.

In order to talk about improving the balance gradually from one graph level to
another, for each graph, Gl, let Tl be the target subdomain weight. If every subdo-
main, Sp, is not heavier than this target (i.e., max jSpj6 Tl), then we say that the graph
is su�ciently balanced and the optimisation can concentrate on re®nement alone (so
long as the balance is not destroyed). However, if max jSpj > Tl, then the optimisa-
tion must concentrate on balancing (with some regard to re®nement). Clearly this
series fTlg is an arbitrary heuristic, but it must be determined with two caveats:
· if it ascends too rapidly, then the balance inherited by Gl from Gl�1 may cause the

partition quality to be lost in trying to attain Tl;
· if it ascends too slowly, then the bene®ts for the partition quality of having a high

imbalance tolerance may never be seen.
In [31], we derive (and report results from) di�erent balancing schedules but here use
the most successful formula from [31] and set Tl � hlS, where S � djV j=Pe is just the
optimal subdomain weight (see Section 1.2) and

hl � 1

"
� 2

P
Nlÿ1

� �1=2
#
;

where Nlÿ1 is the number of vertices in Glÿ1, the parent graph of Gl. In other words, a
graph Gl is considered balanced if the imbalance is less than hl � 1� 2�P=Nlÿ1�1=2
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for l > 0. For the ®nal (and original) graph, G0, which has no parent, we can either
set h0 � 1 to aim for perfect balancing or, as is often the case, e.g., [20], allow a slight
imbalance. For the results in this paper we have chosen h0 � 1:05 and then we set
hl � max�h0; 1� 2�P=Nlÿ1�1=2� for l > 0.

3. Three balancing and re®nement optimisation algorithms

In this section, we describe and compare three parallel iterative optimisation al-
gorithms all of which combine load-balancing and partition quality re®nement.
Initially, we describe the concepts of load-balancing (Section 3.1) and gain and
preference functions (Section 3.2) and then in Section 3.3, we describe the outer it-
erative loop of the optimisation common to all three algorithms. The three algo-
rithms are motivated in Section 3.3.1 and then described in detail in Sections 3.4±3.6.

3.1. Load-balancing: Calculating the ¯ow

Given a graph partitioned into unequal sized subdomains, we need some mech-
anism for distributing the load equally. To do this, we solve the load-balancing
problem on the subdomain graph, Gp, (see Section 1.2) in order to determine a
balancing ¯ow, a ¯ow along the edges of Gp which balances the weight of the sub-
domains. By keeping the ¯ow localised in this way, vertices are not migrated between
non-adjacent subdomains and hence (hopefully) the partition quality is not de-
graded, as it almost certainly would be if vertices were migrated to non-adjacent
subdomains.

This load-balancing problem, i.e., how to distribute N tasks over a network of P
processors so that none have more than dN=Pe, is a very important area for research
in its own right with a vast range of applications. The topic is introduced in [27] and
some common strategies described. Much work has been carried out on parallel or
distributed algorithms and, in particular, on di�usive algorithms, e.g., [6,12]; here we
use an elegant di�usive variant developed by Hu and Blake [19], with fast conver-
gence. This method was derived to minimise the Euclidean norm of the transferred
weight although it has recently been shown that all di�usion methods minimise this
quantity [7,18]. The algorithm simply involves solving the system Lx � b;where L is
the Laplacian of the subdomain graph:

Lpq �
degree�Sp� if p � q;
ÿ1 if p 6� q and Sp is adjacent to Sq;
0 otherwise;

8<:
where degree�Sp� is the degree of (or number of edges incident on) the vertex Sp and
where bp � jSpj ÿ S (the weight of Sp less the optimal subdomain weight). The weight
to be transferred across edge �Sp; Sq� is then given by xp ÿ xq. Note that this method is
closely related to di�usive algorithms except that the di�usion coe�cients are not
®xed but are determined at each iteration by a conjugate gradient search. The al-
gorithm is employed as suggested in [19], solving iteratively with a conjugate gradient
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solver. However, whilst this is an algorithm which is easily parallelised, we have
found it more cost e�ective, for the numbers of processors which we used for testing
(up to 128), to broadcast a copy of the subdomain graph around the parallel machine
and duplicate the (serial) solution of the problem on every processor. Clearly for
large numbers of processors this will not scale and so we have also implemented a
fully parallel version (although it is not used for the tests here). Note ®nally that the
Laplacian of any undirected graph contains a zero eigenvalue with the corresponding
eigenvector �1; 1; . . . ; 1� and the solution iterates are orthogonalised against this [19].
If any other singularities are detected (for example if the graph is disconnected), then
the software will switch to another method, an intuitive and entirely localised dis-
tributed load-balancing algorithm due to Song [29].

The load-balancing algorithm generates a balancing ¯ow across edges of the
subdomain graph, i.e., Fpq along the edge �Sp; Sq�, which is stored in memory.
However, the optimisation algorithms which actually decide which vertices to move
may not be able to satisfy the required ¯ow instantly (because they are limited in the
amount of weight they can transfer in one iteration) and thus decrement the values
for Fpq by any weight that is actually transferred. Indeed for various reasons, the
optimisation may exceed the required ¯ow in which case the appropriate ¯ow in the
opposite direction is recorded (e.g., if Fpq � 10 but processor p actually transfers a
weight of 15, then Fpq is set to 0 and Fqp set to 5). In this way, a legitimate balancing
¯ow is always maintained even if it takes many iterations to realise it. Note that in
the following, we require that ¯ow is positive (Fpq P 0 and Fqp P 0) and unidirec-
tional; i.e., either Fpq � 0 or Fqp � 0 (or both). If either of these requirements are
false, then the ¯ow can be adjusted to meet them by setting Fpq � Fpq ÿmin�Fpq; Fqp�
and Fqp � Fqp ÿmin�Fpq; Fqp�.

Occasionally whilst optimisation is taking place vertex migration can cause the
subdomain graph to change (e.g., two non-adjacent subdomains may become ad-
jacent). If an edge disappears over which ¯ow is scheduled to move, then the sub-
domain graph must be rebalanced although we speed this process up by adding the
extraneous ¯ow back into its source subdomain and rebalancing the graph from that
point. The number of possible rebalances on any graph is restricted to avoid cyclic
behaviour.

3.2. The gain and preference functions

Key concepts in all three optimisation algorithms are the ideas of gain and
preference. Loosely, the gain, gain�v; q�, of a vertex v in subdomain Sp can be
calculated for every other subdomain, Sq, q 6� p, and expresses some `estimate' of
how much the partition would be `improved' were v to migrate to Sq. The preference
pref�v� is then just the value of q which maximises the gain; i.e., pref�v� � q
where gain�v; q� attains maxr2P gain�v; r�. In the event of ties, the choice is made
on the basis of (a) maximum ¯ow, max Fpq, then (b) minimum subdomain weight,
min jSqj and ®nally, if all of these are tied, then a random choice is made.
Throughout the following, vertices are only allowed to migrate to the subdomain to
which their preference is set. Also it is usual for vertices to be sorted by gain using a
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bucket sort [11], and in our implementation we use a binary tree of buckets to
achieve this [32], referred to in the sections below as a bucket tree.

Note that the gain is usually directly related to some cost function which measures
the quality of the partition and which we aim to minimise. Typically, the cost
function used is simply the total weight of cut edges or cut-weight, jEcj, and then the
gain expresses the change in jEcj. More recently, there has been some debate about
the most important quantity to minimise (e.g., [15]) and, for example, in [30],
Vanderstraeten et al. demonstrate that it can be extremely e�ective to vary the cost
function based on a knowledge of the solver, ideas which, in [33], we have used to
extend multilevel techniques to optimise for subdomain shape or aspect ratio.
Whichever cost function is chosen, however, the idea of gains is generic.

For the purposes of this paper, we shall assume that gain�v; q� just expresses the
reduction in the cut-weight, jEcj. Note that there can never be a reduction in the cut-
weight if a vertex v is transferred to a subdomain Sq to which it is not adjacent (since
there will be no cut edges between v and Sq). For this reason, we only calculate gains
for each border vertex to their adjacent subdomains and this in turn restricts the
preference to such subdomains. Indeed, in a high quality partition, most border
vertices will only be adjacent to one other subdomain, Sq, and then the preference is
simply q. As a consequence, processors only migrate vertices to neighbouring sub-
domains along edges of the subdomain graph.

3.3. Parallelising a serial iterative optimisation algorithm

Consider the graph depicted in Fig. 1. The subdomains Sp, Sq and Sr contain 21, 15
and 9 vertices, respectively, and so we can calculate a balancing ¯ow to be 2 from

Fig. 1. An example graph with subdomains Sp, Sq and Sr.
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Sp to Sq (Fpq � 2), 4 from Sp to Sr and 2 from Sq to Sr (note that this is not a unique
solution). We can also determine the gain and preference for each border vertex as
shown; for example as 2p for vertex v meaning that it has a gain of 2 and a preference
to migrate to Sp (or in other words, migrating vertex v from subdomain Sq to sub-
domain Sp will reduce the cut-weight by 2).

A typical serial Kernighan±Lin (KL) [22], type algorithm for optimising this
partition (such as described in [31]) would consist of inner and outer iterative loops.
The inner loop picks vertices (usually those with the highest gain) and migrates them
from one subdomain to another. It will not usually visit any vertex more than once
during the course of an inner loop in order to prevent cyclic behaviour and termi-
nates when all vertices have been visited or when there is little prospect of further
improvement with the unvisited vertices. The outer loop is simply repeated appli-
cations of the inner loop and terminates when no migration takes place within an
inner loop.

The main problems in parallelising this procedure lie within the inner loop.
Firstly, if the graph is distributed, then migrating one vertex at a time involves far
too much communication overhead (with most of the processors lying idle most of
the time) and for this reason, we employ a bulk migration scheme where each
processor ®nds as many border vertices as possible to migrate and moves them once
per iteration of the outer loop. The outer loop (executed concurrently on each
processor) is shown in Fig. 2. It contains three communication steps, a halo update
of the border vertices gain and preference values (where each processor communi-
cates to update these values for the copies on the neighbouring processors), the
migration of vertices to their neighbours and the global update of the optimising
¯ag.

The second and more di�cult problem in parallelising the serial algorithm lies in
determining which vertices to migrate. In fact, the swapping of vertices between two
subdomains is an inherently non-parallel operation and hence there are some di�-
culties in arriving at e�cient parallel versions, [25]. Since all the processors are acting
in parallel on the vertices that they own, simply moving vertices with the highest gain
is not a satisfactory solution as it means that adjacent vertices may be swapped

Fig. 2. The outer iterative loop.
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simultaneously (a non-optimal event often known as a collision) and this may lead to
an increase in the cost, particularly in graphs with weighted edges. For example,
given the situation in Fig. 3 with edges weighted as shown, processor p may wish to
migrate vertex v2 to Sq (on the basis that it has a gain of 1) while at the same time
processor q wishes to migrate vertex v3 to Sp for the same reason. Whilst the mi-
gration of either of these vertices individually will result in a reduction in the cut-
weight of 1, the migration of both at the same time will actually result in an increase
in cut-weight from 2 to 4. Note that collisions can occur despite the fact that the
balancing ¯ow is required to be unidirectional (see Section 3.1) because typically
each iteration will involve the migration of weight Fpq from subdomain Sp to Sq to
satisfy the balancing ¯ow plus the additional equal and opposite migration exchange
of weight W between Sp and Sq for optimisation purposes. This additional exchange
is necessary because in a perfectly balanced system the balancing ¯ow component,
Fpq is zero and so without it optimisation could not occur.

An important part of our strategy for tackling this problem of collisions is to note
that since every border vertex has a subdomain and a preference we can isolate
border regions and de®ne subsets Bpq � fv 2 Bp : pref�v� � qg, or in other words,
Bpq is the set of vertices in the border Bp of subdomain Sp with a preference q. We will
refer to these sets as subdomain faces. Fig. 4(a) shows the six subdomain faces for the
example graph in Fig. 1. Each pair of subdomain faces, Bpq

S
Bqp then forms an

interface region Ipq. Note that since the preference of every border vertex is ®xed
throughout each outer iteration (because it is only determined once during the it-
eration) then these interfaces cannot change during that iteration. This allows us to
isolate regions of the graph which in turn helps to avoid collisions.

3.3.1. Motivation
In the following three sections, we describe in detail three di�erent algorithms

addressing this fundamental problem of collisions but to motivate them quickly the
algorithms can be summarised as:
· Interface optimisation. A serial optimisation algorithm is executed independently

in each of the interface regions Ipq by either one of the processors p or q.
Fig. 4(b) shows the three interface regions for the example graph in Fig. 1.

· Alternating optimisation. One of each pair of subdomain faces is selected and a tol-
erance-based algorithm chooses vertices from that face for migration (to its oppo-
site face). A certain amount of imbalance tolerance is crucial for this algorithm to
work. In the following iteration of the outer loop, the alternate face is selected.
Fig. 4(c) shows an example of the three selected regions in a given iteration of
the outer loop for the graph in Fig. 1.

Fig. 3. An example collision when vertices with positive gains migrated simultaneously result in an

increase in cost.
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· Relative gain optimisation. If we think of the gain as a force or potential, then we can
imagine a relative gain for every border vertex v according to the neighbouring ver-
tices in the opposite face. Fig. 4(d) shows the relative gains of the border vertices for
the graph in Fig. 1. Intuitively, if the gain of the opposite vertices is high, then they
are likely to migrate and so v should not migrate; if the opposing gain is low, then
there is little danger of a collision if v migrates. Once the relative gains are calculat-
ed, an `appropriate' proportion of vertices are moved, highest relative gain ®rst.

3.3.2. Global convergence
Although all three algorithms tend to converge robustly (especially the interface

algorithm) with the global cost, jEcj, decreasing monotonically, this cannot be guar-
anteed (unlike the serial algorithm [31]). To prevent cyclic `thrashing', therefore, the
outer loop is terminated either after no migration has taken place during an iteration
or after some predetermined number of iterations if the cost has not decreased.

3.4. Interface optimisation

The interface optimisation technique works by treating each interface as an in-
dependent problem and executing a serial optimisation algorithm there. Thus for Ipq,

Fig. 4. An example graph showing: (a) subdomain faces; (b) interface regions for independent optimi-

sation; (c) one of each pair of faces selected of alternating optimisation; (d) relative gains as a `potential

®eld'.
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the interface between Sp and Sq, one of the processors, p say, examines both its
border and halo vertices to decide not only which of its vertices should migrate to
neighbour q, but also which vertices should transfer from q to p. The distribution of
interfaces amongst processors is carried out with a crude scheduling algorithm;
simply that processor p handles Ipq if either p < q and q is odd or if p > q and q is
even. All the interfaces are optimised simultaneously in parallel (although each
processor may have to optimise a list of several) and then the processors pass lists to
neighbours of non-local vertices which must be transferred (i.e., if processor p has
optimised the interface Ipq it must then tell processor q which vertices need to be
transferred from Sq to Sp). Finally, a bulk migration step occurs (as in Fig. 2) and all
vertices marked for migration are actually transferred between the processors.

For each interface, the serial optimisation algorithm is very similar to that de-
scribed in [31] and is initialised by inserting all the vertices in the interface into a
bucket tree. The algorithm then proceeds by examining vertices highest gain ®rst (by
always picking vertices from the highest ranked bucket), testing whether the vertex is
acceptable for migration (see below Section 3.4.1) and then transferring it out of the
bucket tree. It terminates when the tree is empty although it may terminate early if
the partition cost (i.e., the cut-weight) rises too far above the cost of the best par-
tition found so far. This type of early termination is typical of KL type algorithms,
[13,17]; without it, the entire interface subgraph may be searched with diminishing
prospect of ®nding a better solution along the search path.

3.4.1. Migration acceptance
Let T refer to the target subdomain weight for the graph (see Section 2.3). If the

required ¯ow from subdomain Sp to subdomain Sq is Fpq, then a vertex v with weight
jvj (>0) is accepted for migration from Sp to Sq (with weights jSpj and jSqj) if

2Fpq > jvj �1a�
or

jSqj � jvj6 T �1b�
These criteria are taken from our serial optimisation algorithm [31], and re¯ect the
aim of trying to balance the graph down to the target weight, T, and then keeping it
there. Migration is thus accepted if (1a) it reduces the required ¯ow or (1b) does not
drive the imbalance above the target weight (although unlike the serial algorithm this
cannot be guaranteed ± see Section 3.4.3).

When a vertex is accepted for migration, the gains of its neighbours, together with
the ¯ow and subdomain weight are modi®ed as if the vertex had actually migrated
(although global consistency is not maintained ± see Section 3.4.3). For example, if
jSpj � 23, jSqj � 16 and Fpq � 3, then if vertex v1 with weight jv1j � 2 is accepted for
migration from Sp to Sq, then these values would be modi®ed to jSpj � 21, jSqj � 18
and Fpq � 1. Further acceptance for migration from Sp to Sq of another vertex v2

with weight jv2j � 2 would then modify them to jSpj � 19, jSqj � 20 and Fpq � ÿ1 or
alternatively Fqp � 1.
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3.4.2. Migration con®rmation and hill-climbing
The algorithm uses a KL-type hill-climbing strategy although it has only a

limited e�ect because the interface regions are generally long and thin. As can be
seen from (1a) and (1b), migrations can be accepted even if they increase the par-
tition cost (i.e. have negative gain). As the interface optimiser runs, a record of the
optimal partition of the interface achieved so far is maintained together with a list of
vertices which have been accepted for migration since that value was attained. If
subsequent migration ®nds a `better' partition, then the migration is con®rmed and
the list is reset. Note that it is possible to ®nd better partitions despite selecting some
vertices with negative gain because, as the optimiser runs, the gains of adjacent
vertices will change and so the migration of a group of vertices some or all of which
start with negative gain can in fact decrease the overall cost (i.e., produce a net
positive gain). Once the interface optimisation has terminated, only those vertices
whose migration has been con®rmed are actually marked for migration in the bulk
migration step.

To de®ne a `better' partition, let p represent the optimal partition of the interface
found so far and pi the subsequent partition after some iterations of the interface
optimiser. Each partition has a cost associated with it, C�p�, (in this case just the
total weight of cut edges across the interface), a ¯ow F �p� � max�Fpq; Fqp� and an
imbalance which depends on W �p�, the weight of the largest subdomain involved in
the interface, W �p� � max�jSpj; jSqj). Again let T represent the target subdomain
weight for the graph (see Section 2.3). Denoting C�pi�, F �pi� and W �pi� by Ci, F i and
W i, respectively (and similarly for p) then pi is con®rmed as a new optimal partition
if:

W i6 T and Ci < C �2a�
or

W i6 T and Ci � C and W i < W �2b�
or

T < W i and F i < F �2c�
Condition (2c) simply states that, while the graph is unbalanced (i.e., W i > T ), any
partition which reduces the ¯ow is con®rmed. Conditions (2a) and (2b) are more
typical of KL type algorithms and con®rm any partition which either improves on
the optimal cost (2a) or on the optimal balance without raising the cost (2b).

3.4.3. Implementation issues
A number of issues arise in the parallel implementation of this algorithm:

· Extension of halos. In order to properly maintain the gains of halo vertices during
the execution of the interface optimiser, a processor p needs to know about edges
between halo vertices (i.e., if a vertex is accepted for migration then its neighbours'
gains must be updated). These edges are not needed for the other two approaches
(alternating and relative gain), nor for parallel graph coarsening and this imposes
an additional communication cost.
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· Additional communications. The need for a processor p handling the optimisa-
tion of the interface Ipq to inform processor q of the results of that optimisation
(prior to the bulk migration step in Fig. 2) adds an additional communication
step. On the other hand, during the halo update, processor p does not need to
update the halo Bpq on processor q as processor q will not be requiring that
information.

· Data consistency. For the interface Ipq, the subdomain weights, jSpj and jSqj used
in (1a) and (1b) and in determining W and W i for (2a)±(2c), are those set at the
beginning of an outer iteration modi®ed by any vertices accepted for migration.
Unfortunately, there are multiple independent interface problems being solved si-
multaneously and so these values are not globally consistent. For this reason, un-
like the serial version, the algorithm cannot guarantee that global imbalance will
remain within the imbalance tolerance once the balance target has been attained
although in practice this is almost always the case.

3.5. Alternating optimisation

The basis of the alternating optimisation approach, independently suggested by
Karypis and Kumar, [21], and Walshaw et al. [34], can be seen as a restriction of the
interface optimisation algorithm above. The strategy is to only allow vertices to
migrate in one direction across any interface during a given iteration of the outer
loop ± see Fig. 4(c). Thus for an interface, Ipq, if the chosen direction is from Sp to Sq

then vertices are only allowed to migrate from the face Bpq of subdomain Sp to
subdomain Sq; in the following outer iteration the direction is reversed. The decision
of which face to choose is carried out with a crude scheduling algorithm similar to
that given in Section 3.4.

Our implementation of the algorithm is almost identical to the interface algo-
rithm described above with a few simpli®cations. Firstly, each processor p can
deal with all of its active faces (those faces from which migration is allowed) in
one go and thus inserts all the border vertices from the active faces into a single
bucket tree. The processor then visits the vertices in order of highest gain (by
always picking vertices out of the highest ranked bucket) and a vertex v with
preference pref�v� � q is then marked for migration if the conditions in (1a) and
(1b) are satis®ed. All visited vertices are removed from the bucket tree and, if
accepted for migration, the ¯ow Fpq and subdomain weights are adjusted and their
unvisited neighbours have their gains updated as if the migration had taken place
and are repositioned in the bucket tree. This retention of the bucket sort is an
important feature of the algorithm since once a vertex is accepted for migration,
its neighbours are likely to have higher gains. This inner loop on each processor
terminates when either the bucket tree is empty or when all outgoing ¯ow re-
quirements have been satis®ed and all vertices with non-negative gain have been
visited. Finally note that the algorithm is restricted to migrating border vertices
but in fact there is no reason why internal vertices should not be included once
they join the border (as a result of neighbouring migrations); however, we have
not tested this.
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3.5.1. Comparison with other methods
The alternating algorithm is simpler to implement than the full interface algo-

rithm because it does not require the extension of halos nor the additional com-
munication step (see Section 3.4.3). The problem of global consistency of data still
arises as before though.

Our version of the alternating algorithm di�ers from that of Karypis and Kumar
[21], in three respects:
· We incorporate balancing ¯ow directly into the algorithm.
· More importantly, a certain amount of tolerated imbalance is crucial for the algo-

rithm to operate and so the use of the multilevel balancing schedule (see Section
2.3) enhances the algorithm (see also the results in Section 4.3). If, on the other
hand, no imbalance is allowed, then T, the target weight, is just the optimal sub-
domain weight S � djV j=Pe. Once the graph is balanced then Fpq � 0 everywhere
(i.e., no balancing ¯ow is required) and at least one and possibly all subdomains
will realise the optimal weight, jSpj � S � T . For all such subdomains, neither of
the migration acceptance conditions (1a) and (1b) can ever be satis®ed and hence
the optimisation will be severely, if not totally, limited.

· As with the other two algorithms presented here, vertex migration is actually rea-
lised, rather than being virtual (see Section 1.3). We believe this enhances the per-
formance of the algorithm because it means that, during the course of the inner
loop, vertices adjacent to those marked for migration (and thus more likely to
be candidates for migration themselves) can have their gains adjusted. With virtual
migration this may often not be possible, as two vertices in the same subdomain
may not be owned by the same processor and such updating hence implies com-
munication.

3.6. Relative gain optimisation

The third algorithm is a somewhat di�erent approach which has already been
described in [34] but which we summarise here. Rather than using an algorithm
running on the entire interface or on alternating faces, the concept is to think of gain
as a force or potential ®eld. From this we can calculate the relative gain on each
border vertex v (calculated as the gain of v minus the average gain of neighbouring
vertices in the opposite face) and use this as a mechanism to avoid collisions. Fig.
4(d) illustrates this; the relative gain of each vertex is shown and it can be seen that
on each interface, the vertices with the largest relative gain which are the vertices
most likely to migrate do not lie directly opposite each other. The algorithm is not as
predictable as interface optimisation or the alternating scheme mentioned above,
which can both predict exactly the improvement in cost for a bi-partition and fairly
accurately for a multiway partition. However, although the relative gain gives no
more than an indication of which vertices to move, in practice it works very e�ec-
tively and collisions are rare.

As before the method uses the outer iterative loop shown in Fig. 2. For each outer
iteration, the optimisation algorithm is run concurrently by every processor p which
estimates the load it wishes to migrate from every face Bpq, visits all its own border
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vertices calculating their relative gain and ®nally marks an appropriate weight of
vertices for migration prioritised by that relative gain. The outer loop then continues
with the parallel bulk migration.

3.6.1. Load to be transferred
The vertex weight to be transferred by any processor p from each of its faces Bpq to

neighbour Sq is given by a simple formula based on both the ¯ow and the total
weight of vertices with positive gain. Firstly, let gpq be the total weight of vertices in
Bpq with gain > 0 (and similarly for Bqp and gqp). Then, if d � max�gpq ÿ Fpq�
gqp ÿ Fqp; 0�, then the load to be migrated from Sp to each neighbour Sq, is set to
apq � Fpq � d=2.

To motivate this formula a little consider the following. First of all, the amount of
load to be migrated, apq, is decided by satisfying any required ¯ow, Fpq, and we as-
sume that this takes place by migrating vertices with the highest positive gain. Thus,
after the ¯ow has been satis®ed the amount of vertices with positive gain is ap-
proximately given by Gpq � gpq ÿ Fpq � gqp ÿ Fqp. It could be argued that this will be
an underestimate if Fpq > gpq, but in this case the scheme is cautious rather than
reckless. At this point we wish, in a similar manner to the KL algorithm to swap
vertices so that none with a positive gain remain. After some experimentation, we
have found that simply moving Gpq=2 from Sp to Sq and vice-versa, ensures fast and
e�ective optimisation provided the vertices are chosen carefully.

3.6.2. Relative gain
The relative gain is determined as follows; for a vertex v in the face Bpq, let Cq�v�

be the set of vertices in Bqp adjacent to v, i.e., Cq�v� � fu 2 Bqp : u$ vg. The relative
gain of a vertex v is then de®ned as

gain�v; q� ÿ
P

Cq�v� gain�u; p�
O�Cq�v�� ;

where O�Cq�v�� represents the number of vertices in Cq�v�. Put more simply, the
relative gain of a vertex v is just the gain of v less the average gain of opposing
vertices, and gives an indication of which are the best vertices to move in order to
avoid collisions. For example, in Fig. 1 vertex v has a gain of 2 and 3 opposing
vertices in Bpr with total gain �ÿ1ÿ 5ÿ 1� � ÿ7 and so v has a relative gain of
2ÿ �ÿ7=3� � 13=3. Thus to prioritise the migration, for each subdomain Sp, vertices
in each border Bpq are sorted by relative gain, largest ®rst, and a weight of apq is
migrated to Sq according to this ordering. The sorting carried out need not be a full
sort since it is only necessary to determine the level of relative gain below which no
vertices will be moved and we have implemented a simple set-based sort on this basis.

4. Results

The software tool written at Greenwich to implement the optimisation techniques
is known as JOSTLE and is freely available for academic and research purposes
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under a licensing agreement. 1 Further details of the parallel implementation of the
algorithms can be found in [32].

The algorithms have been tested on a Cray T3E-900/512 at the University of
Stuttgart. For each test the mesh is read in parallel and distributed contiguously to
the processors (i.e., processor 0 is given the ®rst jV j=P vertices, processor 1 the next
jV j=P , etc.). This means the initial partition can be of extremely poor quality (al-
though see Section 4.4 for results on the impact of the initial distribution). The al-
gorithm is allowed a 5% ®nal imbalance tolerance (set at run-time); i.e., in the
notation of Section 2.3, h0 � 1:05.

The test meshes have been chosen to be a representative sample of medium to
large scale real-life problems and include both 2D and 3D examples of nodal graphs
(where the mesh nodes are partitioned) and dual graphs (where the mesh elements
are partitioned). Table 1 gives a list of the meshes and their sizes; since none of the
graphs are weighted the number of vertices in V is the same as the total vertex weight
jV j and similarly for the edges E. Note that t60k-f is a combination of the t60k nodal
graph and t60k dual graph, with the addition of edges between vertices from t60k-d
which represent mesh elements and the vertices from t60k-n which represent their
nodes.

The results of the parallel multilevel partitioning using the interface optimisation
algorithm from Section 3.4 are shown in Table 2 for four values of P (the number of
processors/subdomains). The table shows the total weight of cut edges or cut-weight,
C (denoted CI for the interface algorithm), and the run-time in seconds, tI (denoted
similarly).

We do not show the ®nal imbalance in the partition, but on an average it was
1.047. Whilst it never exceeded the allowed imbalance of 1.05, this is relatively high
and demonstrates how e�ectively the tolerance part of the algorithm uses any im-
balance it is allowed (this was also noted in [31]).

1 Available from http://www.gre.ac.uk/jostle.

Table 1

Test meshes

Mesh jV j jEj Mesh type

4elt 15 606 45 878 2D nodal graph

t60k-n 30 570 90 575 2D nodal graph

t60k-d 60 005 89 440 2D dual graph

dime20 224 843 336 024 2D dual graph

t60k-f 90 575 360 030 2D full graph

fe-rotor 99 617 662 431 3D nodal graph

598a 110 971 741 934 3D nodal graph

mesh100 103 081 200 976 3D dual graph

cyl3 232 362 457 853 3D dual graph

fe-ocean 143 437 409 593 3D semi-structured graph
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In the following sections, we compare the results with the two other optimisation
algorithms and with a similar parallel multilevel mesh partitioner.

4.1. Comparison with alternating optimisation

Table 3 shows a comparison of the cut-weight C between alternating (A) and
interface (I) optimisation. For each value of P, the ®rst column shows the value of C
for alternating optimisation, CA, while the second column shows the ratio of C for
alternating optimisation over that for interface optimisation, CA=CI. The value 1.11
(4elt, P � 16) means that alternating optimisation resulted in a cut-weight 1.11 times
as large (or 11% larger) than that of interface optimisation. As can be seen, with one
exception (mesh100, P � 16), the results for alternating optimisation are always
worse and can be up to 20% larger (fe-ocean, P � 16). The average di�erence in the
quality ranges between 10% and 5% over the di�erent values of P with an overall
average of 6.8% depreciation in quality. Although this does not demonstrate a

Table 3

A comparison of cut-weight results for alternating (A) and interface (I) optimisation

Mesh P � 16 P � 32 P � 64 P � 128

CA CA=CI CA CA=CI CA CA=CI CA CA=CI

4elt 1187 1.11 1794 1.07 2933 1.08 4542 1.05

t60k-n 1997 1.14 3161 1.08 4742 1.08 7036 1.07

t60k-d 1021 1.10 1673 1.06 2534 1.06 3682 1.04

dime20 1441 1.10 2436 1.08 3781 1.04 5646 1.05

t60k-f 5846 1.13 8521 1.07 12 989 1.07 19 104 1.05

fe-rotor 24 823 1.09 36 571 1.01 52 188 1.03 72 802 1.03

598a 28 101 1.04 43 596 1.03 61 381 1.03 83 883 1.02

mesh100 4528 0.97 7274 1.07 10 634 1.06 14 633 1.05

cyl3 10 622 1.06 15 388 1.05 21 322 1.05 28 640 1.04

fe-ocean 10 269 1.20 15 792 1.11 25 008 1.14 34 119 1.09

Average 1.10 1.06 1.07 1.05

Table 2

The results of the interface algorithm showing the cut-weight C and parallel run-time in seconds ts

Mesh P � 16 P � 32 P � 64 P � 128

CI tI CI tI CI tI CI tI

4elt 1070 0.49 1676 0.67 2728 0.84 4324 1.13

t60k-n 1753 0.87 2930 0.82 4378 0.79 6592 1.34

t60k-d 925 0.54 1573 0.52 2381 0.70 3525 1.31

dime20 1305 1.49 2256 1.17 3632 1.26 5374 1.97

t60k-f 5190 3.46 7931 3.33 12 118 2.87 18 200 3.20

fe-rotor 22 789 8.36 36 345 7.20 50 580 6.58 70 933 8.04

598a 27 009 17.17 42 172 12.63 59 866 10.38 82 292 10.54

mesh100 4662 2.85 6795 2.41 9993 2.61 13 929 3.70

cyl3 9976 12.32 14 639 7.98 20 211 6.34 27 628 6.77

fe-ocean 8546 6.52 14 192 4.62 21 845 3.60 31 420 4.29
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dramatic improvement for the interface optimisation, if, as is commonly assumed,
the parallel communications overhead in the underlying solver are related to the cut-
weight, this could have a signi®cant e�ect on the total parallel runtime (particularly
for a static partition employed over many iterations).

The average ®nal imbalance was 1.011 (with a maximum of 1.032). Once again
this does not exceed the imbalance tolerance of 1.05 and is considerably better than
the interface optimisation algorithm.

Space precludes a detailed comparison of timings (although one can be found in
[32]), but alternating optimisation is almost always faster than interface optimisation
with an overall average speed increase of 8.9%. However, although the partitioner
should be ideally as fast as possible, this variation in partitioning time would gen-
erally be insigni®cant for most solvers which may run for several minutes or even
hours (once again, especially for a static partition).

4.2. Comparison with relative gain optimisation

The cut-weight ®gures for relative gain optimisation are shown in Table 4 and
compared with interface optimisation as before. Once again, with the same exception
(mesh100, P � 16), the results for relative gain optimisation are always worse and
can be up to 25% larger (fe-ocean, P � 16) with an overall depreciation of 8.3%.
However, the average ®nal imbalance was 1.002 (with a maximum of 1.008); this is
considerably better than both the interface and alternating optimisation algorithms.
We do not show detailed timings but relative gain optimisation was on average 7%
faster than interface optimisation.

4.2.1. A hybrid algorithm
During development work on these algorithms it was noticed that both alter-

nating and relative gain optimisation tend to converge to a good solution very
rapidly (usually in less than 10 iterations) but then have di�culty in resolving one or

Table 4

A comparison of cut-weight results for relative gain (R) and interface (I) optimisation

Mesh P � 16 P � 32 P � 64 P � 128

CR CR=CI CR CR=CI CR CR=CI CR CR=CI

4elt 1147 1.07 1922 1.15 2991 1.10 4730 1.09

t60k-n 1872 1.07 3096 1.06 4768 1.09 7163 1.09

t60k-d 1037 1.12 1651 1.05 2516 1.06 3787 1.07

dime20 1372 1.05 2454 1.09 3896 1.07 5799 1.08

t60k-f 5445 1.05 8304 1.05 12 907 1.07 19 233 1.06

fe-rotor 23 655 1.04 38 460 1.06 52 951 1.05 75 898 1.07

598a 28 738 1.06 42 300 1.00 62 240 1.04 85 913 1.04

mesh100 4615 0.99 7459 1.10 11 422 1.14 15 637 1.12

cyl3 10 959 1.10 15 692 1.07 21 919 1.08 30 082 1.09

fe-ocean 10 653 1.25 16 849 1.19 25 445 1.16 36 391 1.16

Average 1.08 1.08 1.09 1.09
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more small areas of the partition and ended up cyclically swapping a few vertices
backwards and forwards between subdomains. It is for this reason that the termi-
nation criteria of Section 3.3.2 were included. Interface optimisation, on the other
hand, converges even more rapidly (although at greater cost per iteration).

This prompted the idea of a hybrid approach, using either alternating or (as here)
relative gain optimisation and once the cyclic behaviour appears (when the global cost
starts to oscillate) to carry out an iteration using the interface optimiser to resolve the
areas where cycling is occurring. This strategy turned out to be very e�ective; denoting
the cut-weight for this hybrid algorithm CH, the results are shown in Table 5 and
compared with interface optimisation as before. Here, we see that the hybrid algo-
rithm is often better than interface optimisation although on average about 2.5%
worse. We do not show the timings here, but they were broadly similar with the
hybrid algorithm just marginally better (about 0.4% on an average). Generally
though, the hybrid algorithm is slightly faster for large numbers of processors (7% on
average for P � 128) and slower for smaller numbers (4% on average for P � 16).
More interestingly, the hybrid algorithm had an average imbalance of just 1.007,
because of the ability of relative gain optimisation to remove almost all imbalance.

4.3. Comparison with ParMETIS

We have also checked the results with another parallel partitioner ParMETIS [21].
As discussed in Sections 1.3 and 3.5.1, ParMETIS is a multilevel partitioner using an
alternating optimisation algorithm, although without the addition of a multilevel
balancing schedule and with virtual migration rather than realised migration. The
cut-weight ®gures for ParMETIS, CM, are shown in Table 6 and compared with the
interface optimisation as previously. As can be seen, without exception, the results
for ParMETIS are always worse than the interface algorithm and can be 49% larger
(fe-ocean, P � 16), although it seems to perform particularly badly on this mesh. The
average di�erence in the quality ranges between 13% and 9% over the di�erent values

Table 5

A comparison of cut-weight results for the hybrid relative gain/interface (H) and interface (I) optimisation

Mesh P � 16 P � 32 P � 64 P � 128

CH CH=CI CH CH=CI CH CH=CI CH CH=CI

4elt 1093 1.02 1774 1.06 2870 1.05 4450 1.03

t60k-n 1875 1.07 2887 0.99 4537 1.04 6786 1.03

t60k-d 964 1.04 1610 1.02 2396 1.01 3609 1.02

dime20 1255 0.96 2315 1.03 3688 1.02 5493 1.02

t60k-f 5037 0.97 8090 1.02 12 271 1.01 18 580 1.02

fe-rotor 23 921 1.05 36 593 1.01 51 432 1.02 73 477 1.04

598a 27 810 1.03 41 187 0.98 60 080 1.00 83 294 1.01

mesh100 4456 0.96 7113 1.05 10 219 1.02 14 473 1.04

cyl3 10 137 1.02 14 456 0.99 20 381 1.01 27 557 1.00

fe-ocean 9688 1.13 15 477 1.09 23 951 1.10 33 688 1.07

Average 1.03 1.02 1.03 1.03
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of P. It is di�cult to say exactly what the cause of this di�erence is but we believe
that the virtual migration does hinder the optimisation slightly (see Section 3.5.1).

On the other hand, the use of virtual migration without the need to possibly re-
map large amounts of the graph does mean that ParMETIS has faster execution time
than JOSTLE. Space considerations preclude a detailed comparison of timings in
tabular form (although one can be found in [32]) but ParMETIS is always faster than
JOSTLE, on average taking 33% of the time to partition (i.e., in other words it is
about three times faster on average).

In summary, these results demonstrate an optimisation rule of thumb that the
longer an algorithm takes to optimise the better the results it gets. Assuming that the
parallel overhead in the solver is related to the cut-weight, the question must then be
asked whether the gain in runtime from having a better partition outweighs the
additional cost in partitioning time. This is obviously very machine and application
dependent, but we would remark that the partitioning times are very small, always
less than 20 s which in our experience is insigni®cant compared with the runtime of a
typical parallel unstructured mesh application. Note also that these are times for the
block-based initial distribution which can signi®cantly slow down the partitioning
(see below Section 4.4); in a dynamic mesh partitioning scenario (e.g., repeated mesh
re®nement), where the partitioning time tends to be much more signi®cant, the initial
partition is likely to be of much higher quality and hence the times even faster (again
see Section 4.4 and, for examples of dynamic repartitioning [34]).

The average imbalance for ParMETIS was 1.032 and occasionally it exceeded the
allowed imbalance of 1.05 (dime20, P � 64, imbalance h � 1:097; 4elt, P � 128,
h � 1:066; fe-rotor, P � 128, h � 1:053). As an experiment, we tried adjusting the
ParMETIS imbalance tolerance to 1% (h0 � 1:01) 2 to compare with the high quality
load-balance ®gures of the hybrid algorithm (an average imbalance of just 1.007). As

2 By setting UNBALANCE_FRACTION & ORDER_UNBALANCE_FRACTION in defs.h to 1.01.

Table 6

A comparison of cut-weight results for ParMETIS and interface (I) optimisation

Mesh P � 16 P � 32 P � 64 P � 128

CM CM=CI CM CM=CI CM CM=CI CM CM=CI

4elt 1184 1.11 1832 1.09 2940 1.08 4631 1.07

t60k-n 1948 1.11 3109 1.06 4738 1.08 7124 1.08

t60k-d 968 1.05 1706 1.08 2481 1.04 3773 1.07

dime20 1474 1.13 2339 1.04 3668 1.01 5704 1.06

t60k-f 5364 1.03 8657 1.09 13 353 1.10 19 960 1.10

fe-rotor 23 284 1.02 37 324 1.03 52 577 1.04 74 484 1.05

598a 30 440 1.13 44 059 1.04 63 460 1.06 86 841 1.06

mesh100 5133 1.10 7745 1.14 11 067 1.11 15 261 1.10

cyl3 115 42 1.16 159 64 1.09 22 168 1.10 29 677 1.07

fe-ocean 12 692 1.49 20 252 1.43 27 580 1.26 37 843 1.20

Average 1.13 1.11 1.09 1.09
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expected, because of the trade-o� between load-balance and partition quality, this
made the cut-weight results worse (14.5% worse than the interface algorithm and
11.6% worse than the hybrid algorithm on average), however, ParMETIS was un-
able to achieve the desired balance and gave an average imbalance of 1.030.

4.4. The impact of the initial distribution

It is of interest to ask what impact does the initial distribution have on the out-
come of the ®nal partition. In Table 7, we compare four di�erent initial distribution
schemes for two example meshes chosen from the test set in Table 1. The cyclic
distribution assigns vertex i to processor p if i modulo P � p, i.e., vertex numbers
0; P ; 2P ; . . . ; are given to processor 0, vertices 1; P � 1; 2P � 1; . . . to processor 1, etc.
The random distribution assigns them randomly (using the standard C library
random number generator drand48 which has a uniform distribution over the unit
interval). The block distribution is the one used for all the previous tests and assigns
the ®rst V =P vertices to processor 0, etc., while the greedy algorithm is a (serial)
graph-based implementation of Farhat's algorithm [10]. Note that the cyclic, ran-
dom and block distributions are all parallel input algorithms in the sense that the
mesh can be read in from ®le in parallel, while the greedy algorithm requires the
execution of a separate serial partitioner. The results show for each value of P the
cut-weight of the initial distribution, C0, the cut-weight of the ®nal partition, C and
the partitioning time in seconds.

The results clearly demonstrate two things. Firstly, modulo a certain amount of
`noise' (inevitable for discrete optimisation algorithms such as these) with a maxi-
mum variation of 4.8% in the ®nal cut-weight, the quality of the ®nal partition is
independent of the quality of the initial distribution. Thus the partitioning techniques
are clearly seen to provide global rather than just local optimisation. Secondly,
however, the partitioning time is strongly dependent on the initial distribution, with
the poorly distributed results taking much longer to partition. Note that this

Table 7

Results showing the e�ect of di�erent initial distributions (with cut-weight C0) on the ®nal partition quality

(cut-weight C) and the parallel partitioning time, t

Initial P � 16 P � 32 P � 64

C0 C t C0 C t C0 C t

t60k-n

Cyclic 86 929 1821 2.08 88 210 2863 1.51 89 586 4476 1.45

Random 84 843 1737 2.06 87 722 2863 1.55 89 103 4385 1.43

Block 6639 1753 0.88 7998 2930 0.80 10 536 4378 0.80

Greedy 2248 1758 0.44 3511 2908 0.48 5336 4476 0.61

Cyl3

Cyclic 43 2639 10 299 14.71 445 449 14 796 9.07 451 608 20 564 6.86

Random 429 109 10 195 14.87 443 501 14 508 9.33 450 678 20 606 6.83

Block 351 188 9976 12.31 375 349 14 639 7.91 388 139 20 211 6.34

Greedy 20 014 10 398 3.49 27 858 14 984 2.93 37 442 20 911 3.47
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discrepancy in runtime diminishes as P increases and we believe that the main reason
for this is that the initial qualities, C0, for the greedy algorithm and block distribution
increase with P whilst for the cyclic and random distributions, which result in almost
all edges being cut (93:7±99:9% in Table 7), C0 stays relatively constant.

Regarding the initial distribution schemes, note that the block distribution can
lead to a wide variation in initial cut-weight dependent on whether the mesh has been
numbered with some form of structure (i.e., as in t60k-n, vertices which are close in
index have a good chance of being neighbours in the graph) or not (i.e., as in cyl3,
where no such relation appears to exist). Finally, note that the cyclic scheme almost
always (and always in Table 7) produces an initial cut-weight worse than the random
distribution for precisely the opposite reason; if such a relation exists in the num-
bering it is destroyed by placing contiguous vertices on di�erent processors.

5. Conclusions

We have described three parallel optimisation algorithms for use in the context of
parallel multilevel partitioning for unstructured meshes. We have compared the re-
sults they generate and seen that the interface optimisation algorithm, Section 3.4,
the most robust of the three and the one closest to our serial ¯ow and tolerance
algorithm [31] (and indeed the original Kernighan±Lin algorithm [22]) generally
produces very high quality partitions, very rapidly and provides the best results in
terms of cut-weight. However, it does not completely remove imbalance in the ®nal
partition and we have shown that a hybrid algorithm, using relative gain with a ®nal
clean-up step of interface optimisation, produces very similar results equally rapidly
and removes most of the imbalance. This suggests that the hybrid approach is an
e�ective solution to the parallel partition optimisation problem and this is especially
true in the light of recent work which suggests that the scalability of a domain de-
composition-based solver can be seriously a�ected by even small imbalances in
processor loading [23]. We have also made comparisons with another partitioning
tool, ParMETIS, and shown that our results are of higher quality although taking
longer to compute. In Section 4.4, we demonstrate the global quality of the results
and that the initial distribution strongly a�ects partitioning time.

Much work continues in the ®eld of mesh partitioning, for example to optimise
di�erent cost functions, e.g., [33], and it is of interest to ask how generic are the
techniques described here. In the near future, we hope to provide further results
using the parallel algorithms to minimise alternative objective functions such as
subdomain aspect ratio or machine mapping (rather than just cut-weight).
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