
Enhanced Dynamic Load-Balancing Of Adaptive

Unstructured Meshes

Chris Walshaw

�

Martin Berzins

�

Abstract

Modern PDE solvers increasingly use adaptive unstructured meshes in order to

discretise complex geometries and control numerical error. The problem of dividing

up the domain equally for a distributed memory parallel computer whilst minimising

the inter-subdomain dependencies can be tackled with graph-based methods such as

Recursive Spectral Bisection. This paper describes an extension to such methods which

renders them more suitable for time-dependent problems where frequent remeshing

may occur, possibly with only relatively small changes to the mesh. Numerical

testing shows that this new approach gives a good speed-up for mesh partitioning

when used to enhance Recursive Spectral Bisection. It is also shown that the overall

computational time can be less than that needed when cheaper but more naive load-

balancing algorithms are used.

1 Introduction

PDE solvers for time-dependent applications are currently being written to obtain accurate

solutions to real life problems with the solution process as automatic as possible. The use

of an unstructured mesh allows the code to cater for completely general geometries and

hence a wide range of problems in both two and three space dimensions. In addition, such

software may employ adaptive methods in space and/or time in order to to control the

numerical error. The desire to control the spatial error in time-varying solutions means

that the position and density of the spatial mesh points may vary dramatically over the

course of an integration.

Parallel versions of such codes face the problem of distributing the mesh. For optimal

performance the load should be evenly balanced and the communication cost reduced

as much as possible by minimising interprocessor dependencies. It is well known that

this mapping problem is NP hard, [3], and so heuristics must be employed to obtain a

usable algorithm. In addition, for time-dependent problems, the unstructured mesh may

be modi�ed every few time-steps and so the load-balancing must have a low cost relative

to that of the solution algorithm in between remeshing.

A number of good load-balancing algorithms (see for example [6] and [9]) are based

on partitioning a graph that corresponds to the communication requirements of the

spatial discretisation routine on an unstructured mesh. Of these techniques Recursive

Spectral Bisection (RSB) is generally highly regarded and an improved version allowing for

quadrisection and even octasection has recently been devised, [3]. The spectral algorithm

�

School of Computer Studies, University of Leeds, Leeds, England. E-mails: chris@scs.leeds.ac.uk and

martin@scs.leeds.ac.uk

971



972 Walshaw and Berzins

forms a natural starting point for the work presented here and in Section 2.2 we give a brief

overview of the method.

Until now, however, such algorithms have not addressed adaptive mesh codes and the

resulting incremental update partitioning problem posed when a mesh with an existing

partition is being re�ned and/or coarsened. The failure to utilise this existing partition

suggests that the load-balancing may be unnecessarily computationally expensive. In [7] an

iterative preprocessing technique for the update problem was proposed to enhance existing

graph-based partitioning methods and in Section 3 we give a summary of this new algorithm.

This repartitioning algorithm, henceforth referred to as Dynamic Recursive Spectral

Bisection (DRSB), has now been integrated into an adaptive parallel PDE solver and

observations on the success of this exercise and some further results are given in Sections

4 & 5 respectively. As a comparison with other partitioning techniques we also include

results of partitions supplied by both RSB and by Recursive Coordinate Bisection (RCB).

2 Recursive Bisection Methods

The Recursive Bisection approach is based on the principal that bisecting a domain is a

much easier task than subdividing into p subdomains. The bisection is obtained by a given

strategy and then the same strategy is applied to the subdomains recursively. In this manner

a partition into p = 2

q

subdomains can be obtained in q recursive steps. Horst Simon,

[6], describes three di�erent bisection strategies { Recursive Coordinate Bisection (RCB),

Graph Bisection (RGB) & Spectral Bisection (RSB) { and demonstrates the superiority of

RSB over the other two.

It should be noted here that Recursive Bisection algorithms can create any number of

partitions (not necessarily a power of 2). For example, to create 3 partitions, the bisection

�eld (the Fiedler vector in the case of RSB or the x/y coordinates for RCB { see below)

can either be divided directly into 3, so called strip-wise partitioning, or bisected with a

1:2 split and then bisection applied again to the larger partition.

2.1 Recursive Coordinate Bisection

RCB is a simple and intuitive technique which bisects the mesh by sorting the elements

using alternately x and y coordinates. Some results are provided as a computationally

inexpensive alternative to DRSB. The method however provides poor separator sets due to

excluding communication information and this is particularly noticeable on very irregular

meshes where the subdomains are likely to be disconnected, [6].

2.2 Recursive Spectral Bisection { An Overview

Spectral partitioning is one of a number of methods, see [6], which partition a graph derived

from the mesh. The fundamental idea is to associate each mesh element with a nodes of

an undirected graph. The dual communication graph, G(V;E) where V is the set

of nodes and E the set of edges, is then de�ned by connecting nodes together (with an

edge) when the spatial discretisation gives rise to a dependency between the corresponding

mesh elements. In the example employed here, a cell-centred 2D �nite volume scheme, a

node of the graph is used to represent a triangle and then each node will have three edges

connecting it to the triangles it is adjacent to and may in addition have edges to those

triangles it shares a corner with. Figure 1 (page 974) shows a simple example of a mesh

and its dual communication graph.

The dual graph can now be represented by an n � n symmetric matrix L, known as



Enhanced Dynamic Load-Balancing 973

the Laplacian, where n is the number of graph nodes. The diagonal of L gives the degree

of each graph node whilst the o�-diagonals are �1 at (i; j) where an edge connects nodes

i and j and zero elsewhere. This positive semi-de�nite matrix has a number of interesting

properties (see [6]). In particular, if x is a vector which describes the bisection of a given

graph, i.e. x

i

= 1 if node i is in subset A or �1 if in B, then the communication cost or

number of interprocessor edges of this bisection is given by

C(x)

def

=

1

4

X

(v;w)�E

(x

v

� x

w

)

2

�

1

4

x

t

Lx:

The bisection problem can now by formulated as:{

Mininise x

t

Lx subject to

n

X

1

x = 0:

Although this discrete problem is NP hard, it may be approximated by a continuous

eigenvector problem if the constraint of discrete x values is relaxed to allow continuous

values. The Laplacian as de�ned always has a zero eigenvalue �

1

, [5], which corresponds to

the eigenvector e (where e

i

= 1 8 i) and places all the nodes in one subset. Choosing an

eigenvector x orthogonal to e guarantees that the load-balancing constraint is satis�ed, since

< e;x >=

P

n

1

x. Thus we select the smallest positive eigenvalue �

2

and its corresponding

eigenvector x

2

, known as the Fiedler vector from the original study of its properties, [2].

This eigenvector gives a weighting for each node which, when used to sort them, usually

gives a near optimal bisection.

2.3 Applications to Solution-Adaptive Problems

Whilst Spectral Bisection usually gives good results for a static problem, it may not be

so suitable for the dynamic partitioning of adaptive meshes. In particular the method is

computationally expensive; the cost of �nding the eigenvector for a problem size n, being

at least O(n logn). While this may not be a great drawback for a static mesh where the

cost can be hidden as a start-up overhead, it may be signi�cant when a time-stepping code

is remeshing frequently.

In addition the method tends to be sensitive to small perturbations in the mesh. For

instance Williams, [9] page 477, states that `a small change in mesh re�nement may lead to

a large change in the second eigenvector.' Combined with the fact that the RSB algorithm

has no mechanism for using existing information about the previous partition, heavy node

migration may result.

In the next Section an incremental method is presented that enables a graph-based

algorithm to use existing information about the partition of a previous mesh. It is described

with particular reference to the Recursive Spectral Bisection algorithm but could used to

enhance the performance of any graph-based method.

3 A Dynamic Partitioning Approach

When a partitioned mesh is modi�ed by the addition of new elements or the removal

of existing ones an immediate load-imbalance (and hence a new partitioning problem) is

created. Provided that the new mesh is based on coarsening or re�ning of the existing one,

as in [1], it is possible to interpolate the existing partition onto the new mesh and to use

this partition as a starting point in a repartitioning algorithm.



974 Walshaw and Berzins

This technique makes the assumption that, unless the mesh has changed dramatically,

the partitions will not need to be changed a great deal. Ideally most mesh elements will

remain in the same subdomain whilst just the boundaries are balanced. In particular if

mesh elements `close to' the interprocessor boundaries are the only ones partitioned then

the information from the previous partition is utilised and, as a result, both the cost

and the amount of node migration should certainly be reduced (the factors being largely

dependent on the granularity). Of course it is not clear that such balancing will produce

optimal communication costs but the results (Section 5 & [7]) actually seem to show an

improvement over those of the RSB algorithm in most cases.

A full description of the Dynamic RSB algorithm (DRSB) together with a discussion

of some implementation issues is given in [7]; here we provide a brief summary. In order to

chose the subsets of nodes which are to be repartitioned, level sets of the graph are de�ned.

Each level set, L

q

, is speci�ed by selecting nodes within q edges of the old interprocessor

boundary (which has been interpolated onto the new mesh). A suitable q (for example

q = 2 or 3) is chosen to give a meaningful subgraph and then all connected groups of

nodes outside L

q

are formed into clusters. A reduced graph is now given by representing

each of these clusters by a single node, weighted according to the number of nodes that it

represents.

1 2 3

4

5

6
7

8

910

1112

13

14

15

1617

18
19

22

24
20

21

23

25

26

27

28

2930

Fig. 1. A simple mesh and the corresponding dual communication graph

1 2 3

4

5

6

7

8

910

1112

13

14

15

1617

18
19

22

24
20

21

23

25

26

27

28

2930

Fig. 2. Clustering of mesh elements and the corresponding reduced graph

Figures 1 & 2 show this clustering technique with q = 2 on a simple mesh. Figure 1



Enhanced Dynamic Load-Balancing 975

shows the mesh (left) immediately after re�nement with the old (and now non optimal)

partition interpolated onto the mesh { the heavy dashed line. The dual graph (right) shows

the interprocessor edges as dotted lines. Figure 2 shows the mesh elements which have been

selected for clustering (shaded) and on the right the reduced dual graph with each cluster

represented by a single node (ringed). On this small mesh the cost savings will not be

large, however for partitions of much greater granularity the reduced graph will constitute

a considerably smaller proportion of the full graph.

Spectral bisection (or another graph-based technique) is now applied to the reduced

graph and the graph partitioned as before { the only di�erence is that, when sorting the

Fiedler vector, clusters are counted with the multiplicity of the number of nodes contained

in them. As a worst case this sorting procedure may fail to produce an evenly balanced

load (if the bisection falls in the middle of a cluster) and in this event the reduced graph is

expanded by one level set and bisection applied again. Assuming the graph is connected,

this gives an iterative technique which converges to (or more properly terminates with) the

full graph. E�ciency, however, may dictate that the iterations terminate early.

The size reduction in the graph can a�ord considerable cost savings and, for the

redistribution, it is expected that the clustered nodes will remain in the same partition

(a node migration saving). Initial tests of the dynamic technique in isolation have shown

that up to an order of magnitude speed-up may be found when the algorithm is used to

enhance RSB, [7].

4 Integration into a Parallel Adaptive PDE Solver

The new mesh partitioning algorithm has been applied to PDE examples taken from

compressible ow problems with moving shock type features. As is usual for such problems

explicit method-of-lines time-integration is employed with spatial error control, [1] & [8],

and this involves only ODE function evaluations and vector operations. For a partitioned

data structure these operations may be implemented easily in parallel using distributed

versions of standard BLAS routines. The bulk of the work (80{90%) therefore lies in the

ODE residual routine which has thus been the initial target for parallelisation.

The discretisation used derives from a cell-centred �nite volume scheme on a mesh of

unstructed triangles. The residuals are calculated by evaluating the ux across each of the

triangle edges and summing these �gures for each element of the solution vector based at

that triangle's centroid. As a result ux calculations are duplicated on edges lying between

triangles on di�erent processors. An alternative might have been to partition the edges

as well as the triangles but in a fully parallel solver this would have called for an extra

communication phase to ush the residuals around the system. This part of the code

involves the distribution of a rich C data structure which must be partitioned into `tiles'

{ conceptually spatially coherent subsets of the mesh and solution data which each reside

on a processor. Each tile has a core (data assigned to that processor) selected by the

partitioning algorithm plus a halo (copies of data assigned to other processors) de�ned by

the discretisation stencil.

A key question in the design of a mesh partitioning algorithm is the trade-o� between the

cost of the algorithm and the improvement in the performance of the solver it is designed

for. The experiments reported here concentrate on the overhead of di�erent partitions

and the e�ect on the number of replicated edge calculations (with communication costs

ignored). In order to investigate this issue a prototype code was constructed in which the

remeshing and partitioning is carried out by the host and the tiles transmitted to their



976 Walshaw and Berzins

home processor. For each residual evaluation the solution vector is distributed by the host

{ each tile receiving its core variables plus any required halo data. The residual is calculated

in parallel (with the amount of time spent here recorded) and transmitted back to the host

for time-integration.

5 Numerical Experiments

In order to discover whether a less than optimal partition would signi�cantly change the

e�ciency of residual evaluation a wedge shock example was tested with the results reported

in Table 1. The computation was performed on a Meiko computing surface consisting of a

SPARC 2 front end and 16 T800 transputers. For this particular example the remeshing

was fairly infrequent with 2927 residual evaluations (563 successful time-steps) and only 19

remeshes. The meshes were also fairly small { averaging 867 elements over all the residual

evaluations. Both these factors tend to favour the sophisticated partitioning algorithms

and indeed any test of this kind is very problem dependent. However in mitigation no

communications were included and there was no parallel linear algebra both of which would

show poor performance with non optimal partitions.

Fig. 3. The wedge shock solution domain after the �rst and �nal remeshes

5.1 The Wedge Shock Example

This problem integrates the Euler equations in two space dimensions (see [8] for a full

description) with an inow of air at Mach 2.5 hitting a 10 degree wedge and forming a

shock front. In its original form this is a steady state problem, however, in the time-

dependent form used here the shock starts o� along the wedge and rises to its steady-state

position as time proceeds. The unstructured mesh becomes heavily re�ned around the front

as it forms but remains coarse away from the wedge and shock. Figure 3 shows the solution

domains after the �rst and �nal remeshes.

5.2 Comparison Results

The following metrics are used in Table 1 to compare the load-balancing algorithms:

Mops: The chief expense of the spectral algorithm lies in the eigenvector calculations

of the Fiedler vector and the number of oating point operations in this part of the code

were totalled to give a measure of the savings a�orded by using the dynamic technique.



Enhanced Dynamic Load-Balancing 977

Table 1

Load Balancing Comparison Results

DRSB RSB RCB

n Mops jE

i

j T

b

T

r

Mops jE

i

j T

b

T

r

jE

i

j T

b

T

r

324 0.9 69 2.6 8.0 1.6 73 3.5 7.7 107 0.3 9.9

299 1.4 68 3.6 15.4 1.5 67 3.1 15.7 113 0.2 17.8

556 1.0 84 3.2 27.9 3.8 82 7.0 28.3 157 0.4 31.8

743 2.5 89 7.1 45.3 5.9 88 10.8 44.8 187 0.6 48.5

764 0.9 86 3.5 126.6 6.1 90 11.3 125.6 192 0.6 146.0

492 0.6 88 2.3 5.5 3.1 86 5.9 5.8 148 0.4 6.5

674 2.7 105 7.1 13.4 4.8 107 9.0 12.9 172 0.5 15.0

682 1.4 104 4.4 31.3 4.9 109 9.3 30.7 176 0.5 34.2

865 4.4 118 10.5 68.9 6.8 130 12.4 72.2 208 0.7 77.3

831 2.0 115 5.8 41.3 6.3 132 11.5 44.2 203 0.7 48.9

1149 5.8 128 13.9 75.1 10.2 144 18.5 75.8 264 0.9 88.1

1064 1.8 125 5.9 27.4 9.0 135 16.3 27.8 270 0.8 32.9

1102 1.1 136 5.0 91.0 9.7 140 17.6 92.8 272 0.9 104.7

1150 1.0 140 4.7 49.7 10.1 151 18.2 51.8 276 0.9 57.0

811 2.6 127 7.9 8.2 5.9 134 11.2 8.0 202 0.6 9.2

851 5.3 124 11.1 38.5 6.3 133 11.5 39.1 220 0.7 44.3

1024 3.6 134 9.2 86.7 8.1 139 14.7 88.6 234 0.8 94.9

1107 1.2 146 4.8 139.1 9.0 151 16.2 146.1 249 0.9 159.8

963 2.4 136 7.1 9.6 7.3 140 13.4 9.8 241 0.8 10.6

15451 42.6 2122 119.9 908.9 120.4 2231 221.4 927.7 3891 12.1 1037.4

jE

i

j { the interprocessor edges: If E

i

is de�ned to be the subset of edges which

cross interprocessor boundaries after repartitioning then another metric is simply the size

of this set. This measure gives an indication of the number of duplicated ux calculations

and the interprocessor communication.

T

b

{ load-balancing time: This �gure represents the rough cost in seconds of �nding

the mesh partitions in serial on a SPARC 2. It serves only to demonstrate the relative costs

of the di�erent load-balancing algorithms and it is felt that the Mops count gives a better

asymptotic measure of cost.

T

r

{ residual evaluation time: These �gures give the time in seconds on 16 T800

transputers for all of the parallel residual evaluations taken at this mesh resolution. No

communication overheads are added in but for each residual the �gure chosen was that of

the slowest processor. These �gures are not directly comparable to T

b

as the SPARC is

about 4 times faster than a T800.

The table shows that the new mesh partitioning algorithm can involve up to an order

of magnitude fewer Mops than RSB but is still expensive compared to RCB. In looking at

the costs of residual evaluation, however, it is clear that the new algorithm results in a more

e�cient calculation than RCB due to less replication of edge calculations (and signi�cantly

less communication).

Benchmarking computations on a serial machine show that the load-balancing accounts

for less than 2% of the cost of the complete integration when the new algorithm is used.

This percentage drops to 0.2% when RCB is used. However the computational saving



978 Walshaw and Berzins

when DRSB is used to partition the mesh shows a 14% saving over RCB for the parallel

residual evaluations. These results suggest that in a fully parallel system, assuming that

load-balancing remains at the same proportion of the overall cost (note that RSB can be

parallelised with good e�ciency, [4]), the DRSB code will be more e�cient than the RCB

code. Furthermore the communications costs for RCB are almost double those of DRSB.

In addition, if parallel linear algebra were employed, the poor quality of the separator sets

might seriously degrade the e�ciency of a naive partition.

These investigations thus suggest that the new algorithm has promise for providing

an e�cient load-balancing approach for the adaptive solution of time-dependent PDEs.

Further work is in progress to validate this claim.

Acknowledgements. The authors would like to acknowledge the �nancial support of

Shell Research Limited. Peter Jimack and David Hodgson are also thanked for their helpful

discussions and Justin Ware for providing the example meshes.

References

[1] M. Berzins, J. Lawson, and J. Ware, Spatial and Temporal Error Control in the Adaptive

Solution of Systems of Conversation Laws. To Appear In: Proc. of 7th IMACS Conf. on

Computer Methods for PDEs, Rutgers Univ., 1992.

[2] M. Fiedler, A Property Of Eigenvectors of Nonnegative Symmetric Matrices and its Applica-

tions to Graph Theory, Czech. Math. J., 25 (1975), pp. 619{633.

[3] B. Hendrickson and R. Leland, An Improved Spectral Graph Partitioning Algorithm for Map-

ping Parallel Computations. Tech. Rep. SAND 92-1460, Sandia National Labs, Albuquerque,

NM., 1992.

[4] Z. Johan, Data Parallel Finite Element Techniques for Large-scale Computational Fluid

Dynamics. PhD. Thesis, Stanford University, 1992.

[5] A. Pothen, H. D. Simon, and K.-P. Liou, Partitioning Sparse Matrices with Eigenvectors of

Graphs, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 430{452.

[6] H. D. Simon, Partitioning of Unstructured Problems for Parallel Processing, Computing

Systems in Engineering, 2 (1991), pp. 135{148.

[7] C. H. Walshaw and M. Berzins, Dynamic Load-Balancing For PDE Solvers On Adaptive

Unstructured Meshes. School of Computer Studies Rep. No. 92.32 (submitted for publication),

1992.

[8] J. Ware and M. Berzins, Finite Volume Techniques for Time-Dependent Fluid-Flow Problems.

To Appear In: Proc. of 7th IMACS Conf. on Computer Methods for PDEs, Rutgers Univ.,

1992.

[9] R. D. Williams, Performance of dynamic load balancing algorithms for unstructed mesh

calculations, Concurrency, 3 (1991), pp. 457{481.


